We provide here some probabilistic interpretations of the generalized binomial distributions proposed by Gazeau et al. [“Generating functions for generalized binomial distributions,” J. Math. Phys.53, 103304 (2012)] https://doi.org/10.1063/1.4757601. In the second part, we prove the “strong conjecture” expressed by Gazeau et al. about the coefficients of the Taylor expansion of the exponential of a polynomial. The proof relies mainly on properties of the Gould-Hopper polynomials.

1.
H.
Bergeron
,
E. M. F.
Curado
,
J.-P.
Gazeau
, and
L. M. C. S.
Rodrigues
, “
Generating functions for generalized binomial distributions
,”
J. Math. Phys.
53
,
103304
(
2012
).
2.
E. M. F.
Curado
,
J.-P.
Gazeau
, and
L. M. C. S.
Rodrigues
, “
On a generalization of the binomial distribution and its Poisson-like limit
,”
J. Stat. Phys.
146
,
264
280
(
2011
).
3.
H. W.
Gould
and
A. T.
Hopper
, “
Operational formulas connected with two generalizations of Hermite polynomials
,”
Duke Math. J.
29
(
1
),
51
63
(
1962
).
4.
C.
Vignat
, “
A probabilistic approach to some results by Nieto and Truax
,”
J. Math. Phys.
51
,
123505
(
2010
).
5.
M. M.
Nieto
and
D. R.
Truax
, “
Arbitrary-order Hermite generating functions for obtaining arbitrary-order coherent and squeezed states
,”
Phys. Lett. A
208
,
8
16
(
1995
).
6.
P.
Carmona
,
F.
Petit
, and
M.
Yor
, “
On exponential functionals of certain Lévy processes
,” in
Exponential Functionals of Brownian Motion and Related Processes
, edited by
M.
Yor
(
Springer
,
2001
).
7.
F.
Spitzer
, “
On a class of random variables
,”
Proc. Am. Math. Soc.
6
(
3
),
494
505
(
1955
).
8.
S.
Janson
,
Gaussian Hilbert Spaces
(
Cambridge University Press
,
1997
).
You do not currently have access to this content.