We present a field theoretical model of point-form dynamics which exhibits resonance scattering. In particular, we construct point-form Poincaré generators explicitly from field operators and show that in the vector spaces for the in-states and out-states (endowed with certain analyticity and topological properties suggested by the structure of the S-matrix) these operators integrate to furnish differentiable representations of the causal Poincaré semigroup, the semidirect product of the semigroup of spacetime translations into the forward lightcone and the group of Lorentz transformations. We also show that there exists a class of irreducible representations of the Poincaré semigroup defined by a complex mass and a half-integer spin. The complex mass characterizing the representation naturally appears in the construction as the square root of the pole position of the propagator. These representations provide a description of resonances in the same vein as Wigner's unitary irreducible representations of the Poincaré group provide a description of stable particles.

1.
A.
Bohm
and
N. L.
Harshman
,
Nucl. Phys. B.
581
,
91
(
2000
).
2.
A.
Bohm
,
H.
Kaldass
, and
S.
Wickramasekara
,
Fortschr. Phys.
51
,
569
(
2003
).
3.
A.
Bohm
,
H.
Kaldass
, and
S.
Wickramasekara
,
Fortschr. Phys.
51
,
604
(
2003
).
4.
S.
Wickramasekara
,
J. Math. Phys.
50
,
042305
(
2009
).
5.
S.
Wickramasekara
,
J. Math. Phys.
50
,
072302
(
2009
).
6.
I.
Antoniou
,
M.
Gadella
,
I.
Prigogine
, and
G. P.
Pronko
,
J. Math. Phys.
39
,
2995
(
1998
).
7.
I. E.
Antoniou
,
M.
Gadella
,
J.
Mateo
, and
G. P.
Pronko
,
J. Phys. A: Math. Gen.
36
,
12109
(
2003
).
8.
B.
Bakamjian
and
L. H.
Thomas
,
Phys. Rev.
92
,
1300
(
1953
).
9.
F.
Coester
and
W. N.
Polyzou
,
Phys. Rev. D
26
,
1348
(
1982
).
10.
B.
Keister
and
W. N.
Polyzou
,
Advances in Nuclear Physics
(
Plenum
,
1991
), Vol.
20
.
11.
P. A. M.
Dirac
,
Rev. Mod. Phys.
21
,
392
(
1949
).
12.
S.
Weinberg
,
Quantum Theory of Fields
(
Cambridge University Press
,
Cambridge
,
1995
), Vol.
1
.
13.
S.
Tomonaga
,
Prog. Theor. Phys.
1
,
27
(
1946
).
14.
J.
Schwinger
,
Phys. Rev.
74
,
1439
(
1948
).
15.
C. M.
Sommerfield
,
Ann. Phys.
84
,
285
(
1974
).
16.
D.
Gromes
,
H. J.
Rothe
, and
B.
Stech
,
Nucl. Phys. B
75
,
313
(
1974
).
17.
A.
di Sessa
,
J. Math. Phys.
15
,
1892
(
1974
).
18.
E. P.
Biernat
,
W. H.
Klink
,
W.
Schweiger
, and
S.
Zelzer
,
Ann. Phys.
323
,
1361
(
2008
).
19.
S. S.
Schweber
,
An Introduction to Relativistic Quantum Field Theory
(
Row
,
Peterson and Company, Elmsford, NY
,
1961
).
20.
K. O.
Friedrichs
,
Commun. Pure Appl. Math.
1
,
361
(
1948
).
21.
I. M.
Gelfand
,
N. Y.
Vilenkin
,
Generalized Functions
(
Academic
,
New York
,
1964
), Vol.
4
;
K.
Maurin
,
General Eigenfunction Expansions and Unitary Representations of Topological Groups
(
Polish Scientific
,
Warsaw
,
1968
).
22.
N. I.
Muskhelishvili
,
Singular Integral Equations: Boundary Problems of Function Theory and their Applications to Mathematical Physics
(
P. Noordhoff
; 1st edition, Dover on second,
Moscow
,
1946
).
23.
M.
Consoli
and
A.
Sirlin
, CERN Report No. 86-02,
1986
, Vol.
1
, p.
63
;
D. Y.
Bardin
,
A.
Leike
,
T.
Riemann
, and
M.
Sachwitz
,
Phys. Lett. B
206
,
546
(
1988
);
S.
Willenbrock
and
G.
Valencia
,
Phys. Lett. B
259
,
373
(
1991
);
A.
Leike
,
T.
Riemann
, and
J.
Rose
,
Phys. Lett. B
273
,
513
(
1991
);
T.
Bhattacharya
and
S.
Willenbrock
,
Phys. Rev. D
47
,
4022
(
1993
);
H. G. J.
Veltman
,
Z. Phys. C
62
,
35
(
1994
);
M.
Passera
and
A.
Sirlin
,
Phys. Rev. Lett.
77
,
4146
(
1996
).
[PubMed]
24.
A.
Bohm
and
Y.
Sato
,
Phys. Rev. D
71
,
085018
(
2005
).
25.
P.
Koosis
, Introduction to
${\mathcal {H}}^p$
Hp
Spaces ,
London Mathematical Society Lecture Notes
Vol.
40
(
Cambridge University Press
,
Cambridge
,
1980
);
The Logarithmic Integral
(
Cambridge University Press
,
Cambridge, England
,
1990
);
P. L.
Duren
,
${\mathcal {H}}^p$
Hp
Spaces (
Academic Press
,
New York
,
1970
);
K.
Hoffman
,
Banach Spaces of Analytic Functions
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1962
; Dover Publications, Mineola, NY, 1988).
26.
K.
Kraus
,
States, Effects and Operations
,
Lecture Notes in Physics
Vol.
190
(
Springer-Verlag
,
Berlin
,
1983
);
G.
Ludwig
,
An Axiomatic Basis of Quantum Mechanics
(
Springer-Verlag
,
Berlin
,
1983
), Vol.
I
; (Springer-Verlag, Berlin, 1987), Vol. II.
27.
T. D.
Lee
,
Particle Physics and Introduction to Field Theory
(
Harwood Academic
,
New York
,
1981
), Chap. 13.
28.
N. L.
Harshman
and
P.
Singh
,
J. Phys. A: Math. Theor.
41
,
155304
(
2008
);
N. L.
Harshman
and
G.
Hutton
,
Phys. Rev. A
77
,
042310
(
2008
).
29.
A.
Bohm
and
N. L.
Harshman
,
Irreversibility and Causality: Semigroups and Rigged Hilbert Spaces
,
Lecture Notes in Physics
Vol.
504
, edited by
A.
Bohm
,
H.-D.
Doebner
, and
P.
Kielanowski
(
Springer-Verlag
,
Berlin
,
1998
).
30.
A.
Bohm
and
M.
Gadella
,
Dirac Kets, Gamow Vectors and Gelfand Triplets
,
Springer Lecture Notes in Physics
Vol.
348
(
Springer
,
New York
,
1989
).
31.
O.
Civitarese
and
M.
Gadella
, “
Physical and mathematical aspects of Gamow states
,”
Phys. Rep.
396
,
41
(
2004
).
32.
N. N.
Bogolubov
and
D. V.
Shirkov
,
Introduction to the Theory of Quantized Fields
(
Interscience Publishers
,
Inc., New York
,
1959
).
33.
G. N.
Watson
,
A Treatise on the Theory of Bessel Functions
(
Cambridge University Press
,
Cambridge
,
1922
).
34.
In the non-relativistic case, the use of Hardy class functions in scattering theory was first proposed in
A.
Bohm
,
Lett. Math. Phys.
3
,
455
(
1979
),
A.
Bohm
,
J. Math. Phys.
22
,
2813
(
1981
), and
M.
Gadella
,
J. Math. Phys.
24
,
1462
(
1983
).
Further mathematical details of this construction, also in the non-relativistic case, can be found in
M.
Gadella
and
F.
Gómez
,
Found. Phys.
32
,
815
(
2002
).
35.
The discrepancy in the signs is due the conventions in physics and mathematics. In scattering theory, the in vectors ϕ+ and out vectors ψ have been defined by their behavior at t → −∞ and t → ∞, respectively. On the other hand, the notation for Hardy spaces
${\cal H}_-^2$
H2
and
${\cal H}_+^2$
H+2
has been used in mathematics based on the analyticity properties on the open lower half plane
$\mathbb {C}_-$
C
and open upper half plane
$\mathbb {C}_+$
C+
, respectively.
You do not currently have access to this content.