We establish conceptually important properties of the operator product expansion (OPE) in the context of perturbative, Euclidean φ4-quantum field theory. First, we demonstrate, generalizing earlier results and techniques of hep-th/1105.3375, that the 3-point OPE,

$\langle {\mathcal {O}}_{A_{1}}{\mathcal {O}}_{A_{2}}{\mathcal {O}}_{A_{3}} \rangle = \sum _{C}{\cal C}_{A_{1}A_{2}A_{3}}^{C}\langle {\mathcal {O}}_{C}\rangle$
OA1OA2OA3=CCA1A2A3COC⁠, usually interpreted only as an asymptotic short distance expansion, actually converges at finite, and even large, distances. We further show that the factorization identity
${\cal C}_{A_{1}A_{2}A_{3}}^{B}=\sum _{C}{\cal C}_{A_{1}A_{2}}^{C}{\cal C}_{CA_{3}}^{B}$
CA1A2A3B=CCA1A2CCCA3B
is satisfied for suitable configurations of the spacetime arguments. Again, the infinite sum is shown to be convergent. Our proofs rely on explicit bounds on the remainders of these expansions, obtained using refined versions, mostly due to Kopper et al., of the renormalization group flow equation method. These bounds also establish that each OPE coefficient is a real analytic function in the spacetime arguments for non-coinciding points. Our results hold for arbitrary but finite loop orders. They lend support to proposals for a general axiomatic framework of quantum field theory, based on such “consistency conditions” and akin to vertex operator algebras, wherein the OPE is promoted to the defining structure of the theory.

1.
K. G.
Wilson
,
Phys. Rev. B
4
,
3174
(
1971
).
2.
K. G.
Wilson
,
Phys. Rev. B
4
,
3184
(
1971
).
3.
W.
Zimmermann
,
Lectures on Elementary Particles and Quantum Field Theory: Brandeis Summer Institute in Theoretical Physics
(
MIT Press
,
Cambridge, Massachusetts
,
1970
).
4.
S.
Hollands
and
C.
Kopper
,
Commun. Math. Phys.
313
,
257
(
2012
);
e-print arXiv:1105.3375 [hep-th].
5.
H.
Bostelmann
,
J. Math. Phys.
46
,
082304
(
2005
);
e-print arXiv:math-ph/0502004 [math-ph].
6.
Y.-Z.
Huang
and
L.
Kong
,
Commun. Math. Phys.
272
,
345
(
2007
);
e-print arXiv:math/0511328 [math.QA].
7.
8.
F. J.
Wegner
and
A.
Houghton
,
Phys. Rev. A
8
,
401
(
1973
).
10.
V. F.
Müller
,
Rev. Math. Phys.
15
,
491
(
2003
);
e-print arXiv:hep-th/0208211 [hep-th].
e-print arXiv:0802.2198 [hep-th].
12.
R.
Haag
,
Local Quantum Physics: Fields, Particles, Algebras
,
Texts and Monographs in Physics
(
Springer-Verlag
,
1992
).
13.
G.
Keller
,
C.
Kopper
, and
M.
Salmhofer
,
Helv. Phys. Acta
65
,
32
(
1992
).
14.
C.
Kopper
,
Renormierungstheorie mit Flussgleichungen
(
Shaker
,
1997
).
15.
C.
Kopper
,
V. F.
Müller
, and
T.
Reisz
,
Ann. Henri Poincare
2
,
387
(
2001
);
e-print arXiv:hep-th/0003254 [hep-th].
16.
G.
Keller
and
C.
Kopper
,
Commun. Math. Phys.
153
,
245
(
1993
).
17.
G.
Keller
and
C.
Kopper
,
Commun. Math. Phys.
148
,
445
(
1992
).
18.
C.
Kopper
,
Commun. Math. Phys.
295
,
669
(
2010
).
19.
G.
Sansone
,
Orthogonal Functions
,
Pure and Applied Mathematics
Vol.
9
(
Dover Publications
,
1991
).
20.
S.
Hollands
and
H.
Olbermann
,
J. Math. Phys.
50
,
112304
(
2009
);
e-print arXiv:0906.5313 [math-ph].
21.
S.
Hollands
and
R. M.
Wald
,
Commun. Math. Phys.
293
,
85
(
2010
);
e-print arXiv:0803.2003 [gr-qc].
22.
R.
Guida
and
C.
Kopper
, e-print arXiv:1103.5692 [math-ph].
You do not currently have access to this content.