We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently.

1.
A. S.
Zhedanov
, “
Hidden symmetry of Askey-Wilson polynomials
,”
Theor. Math. Phys.
89
(
2
),
1146
1157
(
1991
).
2.
Ya. I.
Granovskii
,
A. S.
Zhedanov
, and
I. M.
Lutzenko
, “
Quadratic algebra as a “hidden” symmetry of the Hartmann potential
,”
J. Phys. A
24
,
3887
3894
(
1991
).
3.
Ya. I.
Granovskii
,
A. S.
Zhedanov
, and
I. M.
Lutzenko
, “
Quadratic algebras and dynamics in curved spaces. II. The Kepler problem
,”
Theor. Math. Phys.
91
,
604
612
(
1992
).
4.
Ya. I.
Granovskii
,
I. M.
Lutzenko
, and
A. S.
Zhedanov
, “
Mutual integrability, quadratic algebras, and dynamical symmetry
,”
Ann. Phys.
217
,
1
20
(
1992
).
5.
Ya. I.
Granovskii
,
A. S.
Zhedanov
, and
I. M.
Lutsenko
, “
Quadratic algebras and dynamics in curved space. I. Oscillator
,”
Theor. Math. Phys.
91
,
474
480
(
1992
).
6.
A. S.
Zhedanov
, “
Hidden symmetry algebra and overlap coefficients for two ring-shaped potentials
,”
J. Phys. A
26
,
4633
4641
(
1993
).
7.
D.
Bonatsos
,
C.
Daskaloyannis
, and
K.
Kokkotas
, “
Quantum-algebraic description of quantum superintegrable systems in two dimensions
,”
Phys. Rev. A
48
,
R3407
R3410
(
1993
).
8.
D.
Bonatsos
,
C.
Daskaloyannis
, and
K.
Kokkotas
, “
Deformed oscillator algebras for two-dimensional quantum superintegrable systems
,”
Phys. Rev. A
50
,
3700
3709
(
1994
).
9.
P.
Létourneau
and
L.
Vinet
, “
Superintegrable systems: Polynomial algebras and quasi-exactly solvable Hamiltonians
,”
Ann. Phys. (N.Y.)
243
,
144
168
(
1995
).
10.
D.
Bonatsos
and
C.
Daskaloyannis
, “
Quantum groups and their applications in nuclear physics
,”
Prog. Part. Nucl. Phys.
43
,
537
618
(
1999
).
11.
C.
Daskaloyannis
, “
Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems
,”
J. Math. Phys.
42
,
1100
1119
(
2001
).
12.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
, “
Second order superintegrable systems in conformally flat spaces. 1. 2D classical structure theory
,”
J. Math. Phys.
46
,
053509
(
2005
).
13.
J. M.
Kress
, “
Equivalence of superintegrable systems in two dimensions
,”
Phys. At. Nucl.
70
,
560
566
(
2007
).
14.
C.
Daskaloyannis
and
K.
Ypsilantis
, “
Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two dimensional manifold
,”
J. Math. Phys.
47
,
042904
(
2006
).
15.
C.
Daskaloyannis
and
Y.
Tanoudis
, “
Quantum superintegrable systems with quadratic integrals on a two dimensional manifold
,”
J. Math. Phys.
48
,
072108
(
2007
).
16.
C.
Quesne
, “
Quadratic algebra approach to an exactly solvable position-dependent mass Schrödinger equation in two dimensions
,”
SIGMA
3
,
067
(
2007
).
17.
C.
Daskaloyannis
and
Y.
Tanoudis
, “
Classification of the quantum two-dimensional superintegrable systems with quadratic integrals and the Stäckel transforms
,”
Phys. At. Nucl.
71
,
853
861
(
2008
).
18.
S.
Post
, “
Models of quadratic algebras generated by superintegrable systems in 2D
,”
SIGMA
7
,
036
(
2011
).
19.
E. G.
Kalnins
,
W.
Miller
, Jr.
, and
S.
Post
, “
Models for quadratic algebras associated with second order superintegrable systems in 2D
,”
SIGMA
4
,
008
(
2008
).
20.
E. G.
Kalnins
,
W.
Miller
, Jr.
, and
S.
Post
, “
Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials
,” e-print: arXiv:1212.4766.
21.
E. K.
Sklyanin
, “
Some algebraic structures connected with the Yang-Baxter equation
,”
Funct. Anal. Appl.
16
(
4
),
263
270
(
1982
).
22.
E. K.
Sklyanin
, “
Some algebraic structures connected with the Yang-Baxter equation. Representations of quantum algebras
,”
Funct. Anal. Appl.
17
(
4
),
273
284
(
1983
).
23.
C.
Daskaloyannis
, “
Generalized deformed oscillator and nonlinear algebras
,”
J. Phys. A
24
,
L789
L794
(
1991
).
24.
C.
Quesne
, “
Generalized deformed parafermions, nonlinear deformations of so(3) and exactly solvable potentials
,”
Phys. Lett. A
193
,
245
250
(
1994
).
25.
I.
Marquette
and
P.
Winternitz
, “
Polynomial Poisson algebras for superintegrable systems with a third order integral of motion
,”
J. Math. Phys.
48
,
012902
(
2007
).
26.
I.
Marquette
, “
Superintegrability with third order integrals of motion, cubic algebras and supersymmetric quantum mechanics I: Rational function potentials
,”
J. Math. Phys.
50
,
012101
(
2009
).
27.
I.
Marquette
, “
Superintegrability with third order integrals of motion, cubic algebras and supersymmetric quantum mechanics. II. Painlevé transcendent potentials
,”
J. Math. Phys.
50
,
095202
(
2009
).
28.
I.
Marquette
, “
Superintegrability and higher order polynomial algebras
,”
J. Phys. A: Math. Theor.
43
,
135203
(
2010
).
29.
I.
Marquette
, “
An infinite family of superintegrable systems from higher order ladder operators and supersymmetry, Proceeding of the GROUP28: The XXVIII International Colloquium on Group-Theoretical Methods in Physics
,”
J. Phys.: Conf. Ser.
284
,
012047
(
2011
).
30.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
, “
A recurrence relation approach to higher order quantum superintegrability
,”
SIGMA
7
(
031
),
24
(
2011
).
31.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
, “
Extended Kepler-Coulomb quantum superintegrable systems in 3 dimensions
,”
J. Phys. A: Math. Theor.
46
,
085206
(
2013
).
32.
S.
Post
,
S.
Tsujimoto
, and
L.
Vinet
, “
Families of superintegrable Hamiltonians constructed from exceptional polynomials
,”
J. Phys. A: Math. Theor.
45
,
405202
(
2012
).
33.
I.
Marquette
and
C.
Quesne
, “
New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials
,”
J. Math. Phys.
54
,
042102
(
2013
).
34.
I.
Marquette
and
C.
Quesne
, “
New ladder operators for a rational extension of the harmonic oscillator and superintegrability of some two-dimensional systems
,” e-print arXiv:1303.7150.
35.
J.
Grabowski
,
G.
Marmo
, and
A. M.
Perelomov
, “
Poisson structures: Towards a classification
,”
Mod. Phys. Lett. A
08
,
1719
1733
(
1993
).
36.
E. G.
Kalnins
,
W.
Miller
, Jr.
, and
G. S.
Pogosyan
, “
Superintegrability in three dimensional Euclidean space
,”
J. Math. Phys.
40
,
708
725
(
1999
).
37.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
, “
Second order superintegrable systems in conformally flat spaces. 3. 3D classical structure theory
,”
J. Math. Phys.
46
,
103507
(
2005
).
38.
C.
Daskaloyannis
and
Y.
Tanoudis
, “
Quadratic algebras for three-dimensional nondegenerate superintegrable systems with quadratic integrals of motion
,”
Talk XXVII Colloquium on Group Theoretical Methods in Physics, Yerevan, Armenia, August, 2008
; e-print arXiv:0902.0130.
39.
C.
Daskaloyannis
and
Y.
Tanoudis
, “
Ternary Poisson algebra for the nondegenerate three dimensional Kepler-Coulomb potential
,” in
Proceedings of the Fourth International Workshop on Group Analysis of Differential Equations and Integrable Systems
,
Protaras, Cyprus, 26–30 October, 2008
(
University of Cyprus
,
Nicosia
,
2009
), pp.
173
181
.
40.
C.
Daskaloyannis
and
Y.
Tanoudis
, “
Quadratic algebras for three-dimensional superintegrable systems
,”
Phys. At. Nucl.
73
,
214
221
(
2010
).
41.
I.
Marquette
, “
Generalized MICZ-Kepler system, duality, polynomial, and deformed oscillator algebras
,”
J. Math. Phys.
51
,
102105
(
2010
).
42.
I.
Marquette
, “
Generalized five-dimensional Kepler system, Yang-Coulomb monopole and Hurwitz transformation
,”
J. Math. Phys.
53
,
022103
(
2012
).
43.
Y.-H.
Lee
,
W.-L.
Yang
, and
Y.-Z.
Zhang
, “
Polynomial algebras and exact solutions of general quantum nonlinear optical models I: Two-mode boson systems
,”
J. Phys. A: Math. Theor.
43
,
185204
(
2010
).
44.
Y.-H.
Lee
,
W.-L.
Yang
, and
Y.-Z.
Zhang
, “
Polynomial algebras and exact solutions of general quantum nonlinear optical models: II. Multi-mode boson systems
,”
J. Phys. A: Math. Theor.
43
,
375211
(
2010
).
45.
Y.-H.
Lee
,
J.
Links
, and
Y.-Z.
Zhang
, “
Exact solutions for a family of spin-boson systems
,”
Nonlinearity
24
,
1975
1986
(
2011
).
46.
P.
Terwilliger
, “
The universal Askey-Wilson algebra
,”
SIGMA
7
(
069
),
24
(
2011
).
47.
A. N.
Lavrenov
, “
Deformation of the Askey-Wilson algebra with three generators
,”
J. Phys. A
28
,
L503
L506
(
1995
).
You do not currently have access to this content.