We show that subsingular vectors may exist in Verma modules over W(2, 2), and present the subquotient structure of these modules. We prove conditions for irreducibility of the tensor product of intermediate series module with a highest weight module. Relation to intertwining operators over vertex operator algebra associated with W(2, 2) is discussed. Also, we study the tensor product of intermediate series and a highest weight module over the twisted Heisenberg-Virasoro algebra, and present series of irreducible modules with infinite-dimensional weight spaces.

1.
Adamović
,
D.
, “
New irreducible modules for affine Lie algebras at the critical level
,”
Int. Math. Res. Notices
6
,
253
262
(
1996
).
2.
Adamović
,
D.
, “
Vertex operator algebras and irreducibility of certain modules for affine Lie algebras
,”
Math. Res. Lett.
4
,
809
821
(
1997
), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.183.5500.
3.
Adamović
,
D.
, “
An application of U(g)-bimodules to representation theory of affine Lie algebras
,”
Algebras Represent Theory
7
(
4
),
457
469
(
2004
).
4.
Arbarello
,
E.
,
De Concini
,
C.
,
Kac
,
V. G.
, and
Procesi
,
C.
, “
Moduli spaces of curves and representation theory
,”
Commun. Math. Phys.
117
,
1
36
(
1988
).
5.
Billig
,
Y.
, “
Representations of the twisted Heisenberg-Virasoro algebra at level zero
,”
Can. Math. Bull.
46
,
529
537
(
2003
).
6.
Billig
,
Y.
, “
Energy-momentum tensor for the toroidal Lie algebras
,”
J. Algebra
308
(
1
),
252
269
(
2007
).
7.
Chari
,
V.
and
Pressley
,
A.
, “
A new family of irreducible, integrable modules for affine lie algebras
,”
Math. Ann.
277
,
543
562
(
1987
).
8.
Frenkel
,
I. B.
,
Huang
,
Y.
, and
Lepowsky
,
J.
,
On Axiomatic Approaches to Vertex Operator Algebras and Modules
,
Memoirs of the American Mathematical Society
Vol.
104
(
AMS
,
1993
).
9.
Frenkel
,
I.
,
Lepowsky
,
J.
, and
Meurman
,
A.
,
Vertex Operator Algebras and the Monster
,
Pure and Applied Mathematics
Vol.
134
(
Academic Press, Inc. (London)
,
1988
).
10.
Frenkel
,
I. B.
and
Zhu
,
Y.
, “
Vertex operator algebras associated to representations of affine and Virasoro algebras
,”
Duke Math. J.
66
(
1
),
123
168
(
1992
).
11.
Jiang
,
W.
and
Pei
,
Y.
, “
On the structure of Verma modules over the W-algebra W(2, 2)
,”
J. Math. Phys.
51
,
022303
(
2010
).
12.
Lepowsky
,
J.
and
Li
,
H.
,
Introduction to Vertex Operator Algebras and Their Representations
(
Birkhäuser
,
Basel
,
2004
).
13.
Lu
,
R.
and
Zhao
,
K.
, “
Classification of irreducible weight modules over the twisted Heisenberg-Virasoro algebra
,”
Commun. Contemp. Math.
12
(
2
),
183
205
(
2010
).
14.
Liu
,
D.
and
Zhu
,
L.
, “
Classification of Harish Chandra modules over the W-algebra W(2, 2)
,”
J. Math. Phys.
49
,
012901
(
2008
).
15.
Radobolja
,
G.
, Ph.D. thesis (in Croatian),
University of Zagreb
,
2012
, see http://bib.irb.hr/prikazi-rad?&rad=605718.
16.
Radobolja
,
G.
, “
Application of vertex algebras to the structure theory of certain representations over Virasoro algebra
,”
Algebras Represent Theory
(
2013
) (published online).
17.
Zhang
,
W.
and
Dong
,
C.
, “
W-algebra W(2, 2) and the vertex operator algebra
$L\left( \frac{1}{2},0\right) \otimes L\left( \frac{1}{2},0\right)$
L12,0L12,0
,”
Commun. Math. Phys.
285
,
991
1004
(
2009
).
18.
Zhang
,
H.
, “
A class of representations over the Virasoro Algebra
,”
J. Algebra
190
,
1
10
(
1997
).
You do not currently have access to this content.