We show that subsingular vectors may exist in Verma modules over W(2, 2), and present the subquotient structure of these modules. We prove conditions for irreducibility of the tensor product of intermediate series module with a highest weight module. Relation to intertwining operators over vertex operator algebra associated with W(2, 2) is discussed. Also, we study the tensor product of intermediate series and a highest weight module over the twisted Heisenberg-Virasoro algebra, and present series of irreducible modules with infinite-dimensional weight spaces.
REFERENCES
1.
Adamović
, D.
, “New irreducible modules for affine Lie algebras at the critical level
,” Int. Math. Res. Notices
6
, 253
–262
(1996
).2.
Adamović
, D.
, “Vertex operator algebras and irreducibility of certain modules for affine Lie algebras
,” Math. Res. Lett.
4
, 809
–821
(1997
), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.183.5500.3.
Adamović
, D.
, “An application of U(g)-bimodules to representation theory of affine Lie algebras
,” Algebras Represent Theory
7
(4
), 457
–469
(2004
).4.
Arbarello
, E.
, De Concini
, C.
, Kac
, V. G.
, and Procesi
, C.
, “Moduli spaces of curves and representation theory
,” Commun. Math. Phys.
117
, 1
–36
(1988
).5.
Billig
, Y.
, “Representations of the twisted Heisenberg-Virasoro algebra at level zero
,” Can. Math. Bull.
46
, 529
–537
(2003
).6.
Billig
, Y.
, “Energy-momentum tensor for the toroidal Lie algebras
,” J. Algebra
308
(1
), 252
–269
(2007
).7.
Chari
, V.
and Pressley
, A.
, “A new family of irreducible, integrable modules for affine lie algebras
,” Math. Ann.
277
, 543
–562
(1987
).8.
Frenkel
, I. B.
, Huang
, Y.
, and Lepowsky
, J.
, On Axiomatic Approaches to Vertex Operator Algebras and Modules
, Memoirs of the American Mathematical Society
Vol. 104
(AMS
, 1993
).9.
Frenkel
, I.
, Lepowsky
, J.
, and Meurman
, A.
, Vertex Operator Algebras and the Monster
, Pure and Applied Mathematics
Vol. 134
(Academic Press, Inc. (London)
, 1988
).10.
Frenkel
, I. B.
and Zhu
, Y.
, “Vertex operator algebras associated to representations of affine and Virasoro algebras
,” Duke Math. J.
66
(1
), 123
–168
(1992
).11.
Jiang
, W.
and Pei
, Y.
, “On the structure of Verma modules over the W-algebra W(2, 2)
,” J. Math. Phys.
51
, 022303
(2010
).12.
Lepowsky
, J.
and Li
, H.
, Introduction to Vertex Operator Algebras and Their Representations
(Birkhäuser
, Basel
, 2004
).13.
Lu
, R.
and Zhao
, K.
, “Classification of irreducible weight modules over the twisted Heisenberg-Virasoro algebra
,” Commun. Contemp. Math.
12
(2
), 183
–205
(2010
).14.
Liu
, D.
and Zhu
, L.
, “Classification of Harish Chandra modules over the W-algebra W(2, 2)
,” J. Math. Phys.
49
, 012901
(2008
).15.
Radobolja
, G.
, Ph.D. thesis (in Croatian), University of Zagreb
, 2012
, see http://bib.irb.hr/prikazi-rad?&rad=605718.16.
Radobolja
, G.
, “Application of vertex algebras to the structure theory of certain representations over Virasoro algebra
,” Algebras Represent Theory
(2013
) (published online).17.
Zhang
, W.
and Dong
, C.
, “W-algebra W(2, 2) and the vertex operator algebra
,” $L\left( \frac{1}{2},0\right) \otimes L\left( \frac{1}{2},0\right)$
Commun. Math. Phys.
285
, 991
–1004
(2009
).18.
Zhang
, H.
, “A class of representations over the Virasoro Algebra
,” J. Algebra
190
, 1
–10
(1997
).© 2013 AIP Publishing LLC.
2013
AIP Publishing LLC
You do not currently have access to this content.