The paper analyzes basic mathematical questions for a model of chemically reacting mixtures. We derive a model of several (finite) component compressible gas taking rigorously into account the thermodynamical regime. Mathematical description of the model leads to a degenerate parabolic equation with hyperbolic deviation. The thermodynamics implies that the diffusion terms are non-symmetric, not positively defined, and cross-diffusion effects must be strongly marked. The mathematical goal is to establish the existence of weak solutions globally in time for arbitrary number of reacting species. A key point is an entropy-like estimate showing possible renormalization of the system.

1.
R. A.
Adams
and
J. J. F.
Fournier
,
Sobolev Spaces
, 2nd ed. (
Elsevier
,
Amsterdam
,
2003
).
2.
H.
Alt
and
S.
Luckhaus
, “
Quasilinear elliptic-parabolic differential equations
,”
Math. Z.
183
,
311
341
(
1983
).
3.
J.
Bebernes
and
D.
Eberly
,
Mathematical Problems from Combustion Theory
,
Applied Mathematical Sciences
Vol.
83
(
Springer-Verlag
,
New York
,
1989
).
4.
D.
Bothe
, “
On the Maxwell-Stefan approach to multicomponent diffusion
,” Progress in Nonlinear Differential Equations and their Applications, pp.
81
93
. Springer, Basel,
2011
.
5.
D.
Bresch
and
B.
Desjardins
, “
On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids
,”
J. Math. Pures Appl.
87
(
1
),
57
90
(
2007
).
6.
D.
Bresch
,
B.
Desjardins
, and
C.-K.
Lin
, “
On some compressible fluid models: Korteweg, lubrication, and shallow water systems
,”
Commun. Partial Differ. Equ.
28
(
3–4
),
843
868
(
2003
).
7.
J. A.
Carrillo
,
A.
Jüngel
,
P. A.
Markowich
,
G.
Toscani
, and
A.
Unterreiter
, “
Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities
,”
Monatsh. Math.
133
(
1
),
1
82
(
2001
).
8.
G.-Q.
Chen
,
D.
Hoff
, and
K.
Trivisa
, “
Global solutions to a model for exothermically reacting, compressible flows with large discontinuous initial data
,”
Arch. Ration. Mech. Anal.
166
(
4
),
321
358
(
2003
).
9.
L.
Chen
and
A.
Jüngel
, “
Analysis of a multidimensional parabolic population model with strong cross-diffusion
,”
SIAM J. Math. Anal.
36
(
1
),
301
322
(
2004
).
10.
P.
Degond
,
S.
Génieys
, and
A.
Jüngel
, “
A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects
,”
J. Math. Pures Appl.
76
(
10
),
991
1015
(
1997
).
11.
D.
Donatelli
and
K.
Trivisa
, “
On the motion of a viscous compressible radiative-reacting gas
,”
Commun. Math. Phys.
265
(
2
),
463
491
(
2006
).
12.
B.
Ducomet
, “
A model of thermal dissipation for a one-dimensional viscous reactive and radiative gas
,”
Math. Methods Appl. Sci.
22
(
15
),
1323
1349
(
1999
).
13.
E.
Feireisl
and
A.
Novotný
,
Singular Limits in Thermodynamics of Viscous Fluids
,
Advances in Mathematical Fluid Mechanics
(
Birkhäuser Verlag
,
Basel
,
2009
).
14.
E.
Feireisl
,
H.
Petzeltová
, and
K.
Trivisa
, “
Multicomponent reactive flows: Global-in-time existence for large data
,”
Commun. Pure Appl. Anal.
7
(
5
),
1017
1047
(
2008
).
15.
H.
Gajewski
and
K.
Zacharias
, “
Global behaviour of a reaction-diffusion system modelling chemotaxis
,”
Math. Nachr.
195
,
77
114
(
1998
).
16.
V.
Giovangigli
,
Multicomponent Flow Modeling
,
Modeling and Simulation in Science, Engineering and Technology
(
Birkhäuser Boston Inc.
,
Boston, MA
,
1999
).
17.
R.
Klein
,
N.
Botta
,
T.
Schneider
,
C. D.
Munz
,
S.
Roller
,
A.
Meister
,
L.
Hoffmann
, and
T.
Sonar
, “
Asymptotic adaptive methods for multi-scale problems in fluid mechanics
,”
J. Eng. Math.
39
(
1–4
),
261
343
(
2001
).
18.
A.
Kufner
,
O.
John
, and
S.
Fučik
,
Function Spaces
(
Academia
,
Praha
,
1977
).
19.
M.
Lewicka
and
P. B.
Mucha
, “
On temporal asymptotics for the pth power viscous reactive gas
,”
Nonlinear Anal.
57
(
7–8
),
951
969
(
2004
).
20.
J.
Málek
and
K. R.
Rajagopal
, “
A thermodynamic framework for a mixture of two liquids
,”
Nonlinear Anal.: Real World Appl.
9
(
4
),
1649
1660
(
2008
).
21.
A.
Mellet
and
A.
Vasseur
, “
On the barotropic compressible Navier-Stokes equations
,”
Commun. Partial Differ. Equ.
32
(
1–3
),
431
452
(
2007
).
22.
P. B.
Mucha
and
M.
Pokorný
, “
On the steady compressible Navier-Stokes-Fourier system
,”
Commun. Math. Phys.
288
(
1
),
349
377
(
2009
).
23.
A.
Novotný
and
M.
Pokorný
, “
Weak and variational solutions to steady equations for compressible heat conducting fluids
,”
SIAM J. Math. Anal.
43
(
3
),
1158
1188
(
2011
).
24.
A.
Novotný
and
I.
Straškraba
,
Introduction to the Mathematical Theory of Compressible Flow
,
Oxford Lecture Series in Mathematics and its Applications
Vol.
27
(
Oxford University Press
,
Oxford
,
2004
).
25.
B.
Perthame
, “
Transport equations in biology
,
Frontiers in Mathematics
(
Birkhäuser Verlag
,
Basel
,
2007
).
26.
T.
Roubíček
, “
Incompressible ionized fluid mixtures
,”
Continuum Mech. Thermodyn.
17
(
7
),
493
509
(
2006
).
27.
L.
Waldmann
and
E.
Trübenbacher
, “
Formale kinetische theorie von Gasgemischen aus anregbaren Molekülen
,”
Z. Naturforsch
17A
,
363
376
(
1962
).
28.
E.
Zatorska
, “
On a steady flow of multicomponent, compressible, chemically reacting gas
,”
Nonlinearity
24
,
3267
3278
(
2011
).
29.
E.
Zatorska
, “
On the flow of chemically reacting gaseous mixture
,”
J. Differ. Equations
253
(
12
),
3471
3500
(
2012
).
You do not currently have access to this content.