We provide a recursive method for systematically constructing product formula approximations to exponentials of commutators, giving approximations that are accurate to arbitrarily high order. Using these formulas, we show how to approximate unitary exponentials of (possibly nested) commutators using exponentials of the elementary operators, and we upper bound the number of elementary exponentials needed to implement the desired operation within a given error tolerance. By presenting an algorithm for quantum search using evolution according to a commutator, we show that the scaling of the number of exponentials in our product formulas with the evolution time is nearly optimal. Finally, we discuss applications of our product formulas to quantum control and to implementing anticommutators, providing new methods for simulating many-body interaction Hamiltonians.

1.
A. J.
Chorin
,
T. J. R.
Hughes
,
M. F.
McCracken
, and
J. E.
Marsden
, “
Product formulas and numerical algorithms
,”
Commun. Pure Appl. Math.
31
,
205
(
1978
).
2.
S.
Lloyd
, “
Universal quantum simulators
,”
Science
273
,
1073
(
1996
).
3.
D.
Aharonov
and
A.
Ta-Shma
, “
Adiabatic quantum state generation and statistical zero knowledge
,” in
Proceedings of the 35th ACM Symposium on Theory of Computing
(
ACM
,
New York
,
2003
), pp.
20
29
; e-print arXiv:quant-ph/0301023.
4.
A. M.
Childs
,
R.
Cleve
,
E.
Deotto
,
E.
Farhi
,
S.
Gutmann
, and
D. A.
Spielman
, “
Exponential algorithmic speedup by quantum walk
,” in
Proceedings of the 35th ACM Symposium on Theory of Computing
(
ACM
,
New York
,
2003
), pp.
59
68
; e-print arXiv:quant-ph/0209131.
5.
A. M.
Childs
, “
Quantum information processing in continuous time
,” Ph.D. dissertation,
Massachusetts Institute of Technology
,
2004
.
6.
D. W.
Berry
,
G.
Ahokas
,
R.
Cleve
, and
B. C.
Sanders
, “
Efficient quantum algorithms for simulating sparse Hamiltonians
,”
Commun. Math. Phys.
270
,
359
(
2007
); e-print arXiv:quant-ph/0508139.
7.
N.
Wiebe
,
D. W.
Berry
,
P.
Høyer
, and
B. C.
Sanders
, “
Higher order decompositions of ordered operator exponentials
,”
J. Phys. A
43
,
065203
(
2010
); e-print arXiv:0812.0562.
8.
A.
Papageorgiou
and
C.
Zhang
, “
On the efficiency of quantum algorithms for hamiltonian simulation
,”
Quantum Inf. Process.
11
,
541
(
2012
); e-print arXiv:1005.1318.
9.
N.
Zagury
,
A.
Aragão
,
J.
Casanova
, and
E.
Solano
, “
Unitary expansion of the time evolution operator
,”
Phys. Rev. A
82
,
042110
(
2010
); e-print arXiv:1008.1985.
10.
A. M.
Childs
and
R.
Kothari
, “
Simulating sparse Hamiltonians with star decompositions
,” in
Theory of Quantum Computation, Communication, and Cryptography
,
Lecture Notes in Computer Science
Vol.
6519
(
Springer
,
2011
), pp.
94
103
; e-print arXiv:1003.3683.
11.
E.
Farhi
,
J.
Goldstone
,
S.
Gutmann
, and
M.
Sipser
, “
Quantum computation by adiabatic evolution
,” e-print arXiv:quant-ph/0001106.
12.
E.
Farhi
,
J.
Goldstone
, and
S.
Gutmann
, “
A quantum algorithm for the Hamiltonian NAND tree
,”
Theory Comput.
4
,
169
(
2008
); e-print arXiv:quant-ph/0702144.
13.
A. W.
Harrow
,
A.
Hassidim
, and
S.
Lloyd
, “
Quantum algorithm for linear systems of equations
,”
Phys. Rev. Lett.
103
,
150502
(
2009
); e-print arXiv:0811.3171.
14.
J. T.
Merrill
and
K. R.
Brown
, “
Progress in compensating pulse sequences for quantum computation
,” e-print arXiv:1203.6392.
15.
A. Y.
Kitaev
,
A. H.
Shen
, and
M. N.
Vyalyi
,
Classical and Quantum Computation
(
AMS
,
2002
).
16.
F.
Jean
and
P.-V.
Koseleff
, “
Elementary approximation of exponentials of lie polynomials
,” in
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes
,
Lecture Notes in Computer Science
Vol.
1255
(
Springer
,
1997
), pp.
174
188
.
17.
S.
Sefi
and
P.
van Loock
, “
How to decompose arbitrary continuous-variable quantum operations
,”
Phys. Rev. Lett.
107
,
170501
(
2011
).
18.
M.
Suzuki
, “
General theory of fractal path integrals with applications to many-body theories and statistical physics
,”
J. Math. Phys.
32
,
400
(
1991
).
19.
D.
Poulin
,
A.
Qarry
,
R.
Somma
, and
F.
Verstraete
, “
Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space
,”
Phys. Rev. Lett.
106
,
170501
(
2011
); e-print arXiv:1102.1360.
20.
S.
Blanes
and
F.
Casas
, “
On the convergence and optimization of the Baker–Campbell–Hausdorff formula
,”
Linear Algebr. Appl.
378
,
135
(
2004
).
21.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
,
Applied Mathematics Series
Vol.
55
(
U.S. Government Printing Office
,
1964
).
22.
C. H.
Bennett
,
E.
Bernstein
,
G.
Brassard
, and
U.
Vazirani
, “
Strengths and weaknesses of quantum computing
,”
SIAM J. Comput.
26
,
1510
(
1997
); e-print arXiv:quant-ph/9701001.
23.
E.
Farhi
and
S.
Gutmann
, “
Analog analogue of a digital quantum computation
,”
Phys. Rev. A
57
,
2403
(
1998
); e-print arXiv:quant-ph/9612026.
24.
N.
Khaneja
,
T.
Reiss
,
C.
Kehlet
,
T.
Schulte-Herbrüggen
, and
S. J.
Glaser
, “
Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms
,”
J. Magn. Reson.
172
,
296
(
2005
).
25.
T.
Schulte-Herbrüggen
,
A.
Spörl
,
N.
Khaneja
, and
S. J.
Glaser
, “
Optimal control-based efficient synthesis of building blocks of quantum algorithms: A perspective from network complexity towards time complexity
,”
Phys. Rev. A
72
,
042331
(
2005
); e-print arXiv:quant-ph/0502104.
26.
T. W.
Borneman
,
C. E.
Granade
, and
D. G.
Cory
, “
Parallel information transfer in a multi-node quantum information processor
,”
Phys. Rev. Lett.
108
,
140502
(
2012
); e-print arXiv:1107.4333.
27.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
28.
B. P.
Lanyon
,
J. D.
Whitfield
,
G. G.
Gillett
,
M. E.
Goggin
,
M. P.
Almeida
,
I.
Kassal
,
J. D.
Biamonte
,
M.
Mohseni
,
B. J.
Powell
,
M.
Barbieri
 et al, “
Towards quantum chemistry on a quantum computer
,”
Nat. Chem.
2
,
106
(
2010
); e-print arXiv:0905.0887.
29.
J. T.
Barreiro
,
M.
Müller
,
P.
Schindler
,
D.
Nigg
,
T.
Monz
,
M.
Chwalla
,
M.
Hennrich
,
C. F.
Roos
,
P.
Zoller
, and
R.
Blatt
, “
An open-system quantum simulator with trapped ions
,”
Nature (London)
470
,
486
(
2011
); e-print arXiv:1104.1146.
30.
S.
Raeisi
,
N.
Wiebe
, and
B. C.
Sanders
, “
Quantum-circuit design for efficient simulations of many-body quantum dynamics
,”
New J. Phys.
14
,
103017
(
2012
); e-print arXiv:1108.4318.
31.
A. Y.
Kitaev
, “
Fault-tolerant quantum computation by anyons
,”
Ann. Phys.
303
,
2
(
2003
).
32.
L.
Sheridan
,
D.
Maslov
, and
M.
Mosca
, “
Approximating fractional time quantum evolution
,”
J. Phys. A
42
,
185302
(
2009
); e-print arXiv:0810.3843.
33.
A. Y.
Kitaev
, “
Quantum computations: Algorithms and error correction
,”
Russ. Math. Surveys
52
,
1191
(
1997
).
34.
C. M.
Dawson
and
M. A.
Nielsen
, “
The Solovay-Kitaev algorithm
,”
Quantum Inf. Comput.
6
,
81
(
2006
); e-print arXiv:quant-ph/0505030.
35.
V.
Kliuchnikov
,
D.
Maslov
, and
M.
Mosca
, “
Fast and efficient exact synthesis of single qubit unitaries generated by Clifford and T gates
,”
Quantum Inf. Comput.
13
,
607
(
2013
); e-print arXiv:1206.5236.
36.
A.
Bocharov
and
K. M.
Svore
, “
A depth-optimal canonical form for single-qubit quantum circuits
,”
Phys. Rev. Lett.
109
,
190501
(
2012
); e-print arXiv:1206.3223.
37.
S.
Blanes
,
F.
Casas
, and
J.
Ros
, “
Extrapolation of symplectic integrators
,”
Celest. Mech. Dyn. Astron.
75
,
149
(
1999
).
38.
S.
Chin
, “
Multi-product splitting and Runge-Kutta-Nyström integrators
,”
Celest. Mech. Dyn. Astron.
106
,
391
(
2010
); e-print arXiv:0809.0914.
39.
A. M.
Childs
and
N.
Wiebe
, “
Hamiltonian simulation using linear combinations of unitary operations
,”
Quantum Inf. Comput.
12
,
901
(
2012
); e-print arXiv:1202.5822.
You do not currently have access to this content.