Coarse-grained spin density functional theory (SDFT) is a version of SDFT which works with number/spin densities specified to a limited resolution — averages over cells of a regular spatial partition — and external potentials constant on the cells. This coarse-grained setting facilitates a rigorous investigation of the mathematical foundations which goes well beyond what is currently possible in the conventional formulation. Problems of existence, uniqueness, and regularity of representing potentials in the coarse-grained SDFT setting are here studied using techniques of (Robinsonian) nonstandard analysis. Every density which is nowhere spin-saturated is V-representable, and the set of representing potentials is the functional derivative, in an appropriate generalized sense, of the Lieb internal energy functional. Quasi-continuity and closure properties of the set-valued representing potentials map are also established. The extent of possible non-uniqueness is similar to that found in non-rigorous studies of the conventional theory, namely non-uniqueness can occur for states of collinear magnetization which are eigenstates of Sz.

1.
R.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Clarendon
,
Cambridge
,
1989
).
2.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory: An Approach to the Quantum Many-Body Problem
(
Springer-Verlag
,
Berlin
,
1990
).
3.
H.
Eschrig
,
The Fundamentals of Density Functional Theory
(
Teubner
,
Stuttgart, Leipzig
,
1996
).
4.
W.
Koch
and
M. C.
Holthausen
,
A Chemist's Guide to Density Functional Theory
, 2nd ed. (
Wiley-VCH
,
Weinheim
,
2001
).
5.
R.
van Leeuwen
, in
Advances in Quantum Chemistry
, edited by S. J. R. and B. E. (
Elsevier
,
Amsterdam
,
2003
), Vol.
43
, pp.
25
94
.
6.
A Primer in Density Functional Theory
,
Lecture Notes in Physics
Vol.
620
, edited by
C.
Fiolhais
,
F.
Nogueira
, and
M.
Marques
(
Springer-Verlag
,
Berlin, Heidelberg
,
2003
).
7.
E.
Engel
and
R. M.
Dreizler
,
Density Functional Theory: An Advanced Course
(
Springer-Verlag
,
Berlin, Heidelberg
,
2011
).
9.
M.
Levy
,
Proc. Natl. Acad. Sci. U.S.A.
76
,
6062
(
1979
).
11.
E. H.
Lieb
,
Int. J. Quantum Chem.
24
,
243
(
1983
).
12.
H.
Englisch
and
R.
Englisch
,
Physica A
121
,
253
(
1983
).
13.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
14.
U.
Von Barth
and
L.
Hedin
,
J. Phys. C: Solid State Phys.
5
,
1629
(
1972
).
15.
K.
Capelle
and
G.
Vignale
,
Phys. Rev. Lett.
86
,
5546
(
2001
).
16.
H.
Eschrig
and
W. E.
Pickett
,
Solid State Commun.
118
,
123
(
2001
).
17.
C. A.
Ullrich
,
Phys. Rev. B
72
,
073102
(
2005
).
18.
N. I.
Gidopoulos
,
Phys. Rev. B
75
,
134408
(
2007
).
19.
J. T.
Chayes
,
L.
Chayes
, and
M. B.
Ruskai
,
J. Stat. Phys.
38
,
497
(
1985
).
20.
P. E.
Lammert
,
J. Chem. Phys.
125
,
074114
(
2006
).
21.
P. E.
Lammert
,
Phys. Rev. A
82
,
012109
(
2010
).
22.
P. E.
Lammert
, e-print arXiv:0908.1263v3.
23.
A.
Robinson
,
Non-Standard Analysis
(
North-Holland
,
Amsterdam
,
1966
) (reissued by Princeton University Press, 1996).
24.
T.
Lindstrom
, in
Nonstandard Analysis
, edited by
N.
Cutland
(
Cambridge University Press
,
Cambridge, New York
,
1988
), pp.
1
105
.
25.
R.
Goldblatt
,
Lectures on the Hyperreals: An Introduction to Nonstandard Analysis
(
Springer
,
New York
,
1998
).
26.
P. A.
Loeb
and
A. E.
Hurd
,
An Introduction to Nonstandard Real Analysis
(
Academic Press
,
Orlando
,
1985
).
27.
P. A.
Loeb
, in
Nonstandard Analysis for the Working Mathematician
, edited by
P. A.
Loeb
and
M. P. A.
Wolff
(
Kluwer Academic Publishers
,
Dordrecht, Boston
,
2000
).
28.
M.
Davis
,
Applied Nonstandard Analysis
(
Wiley
,
New York
,
1977
).
29.
S.
Albeverio
,
J.
Fenstad
,
R.
Hoegh-Krohn
, and
T.
Lindstrom
,
Nonstandard Methods in Stochastic Analysis and Mathematical Physics
(
Academic Press
,
Orlando
,
1986
) (reprinted by Dover, 2009).
30.
K. D.
Stroyan
and
W. A. J.
Luxemburg
,
Introduction to the Theory of Infinitesimals
(
Academic Press
,
New York
,
1976
).
31.
I.
Ekeland
and
R.
Témam
,
Convex Analysis and Variational Problems
(
North-Holland
,
Amsterdam
,
1976
) (reprinted by SIAM, Philadelphia, 1999).
32.
N.
Cutland
,
Bull. London Math. Soc.
15
,
529
(
1983
).
33.
K. D.
Stroyan
, Foundations of Infinitesimal Calculus, see www.math.uiowa.edu/~stroyan.
34.
C. W.
Henson
, in
Nonstandard Analysis: Theory and Applications
,
NATO Advanced Science Institutes Series, Series C, Mathematical and Physical Sciences
Vol.
493
, edited by
L. O.
Arkeryd
,
N. J.
Cutland
, and
C. W.
Henson
(
Kluwer Academic
,
Boston
,
1997
), pp.
1
49
, see http://www.math.uiuc.edu/~henson/papers/basics.pdf.
35.
R. S.
Baty
,
F.
Farassat
, and
D. H.
Tucker
,
J. Math. Phys.
49
,
063101
(
2008
).
36.
H.
Yamashita
,
J. Math. Phys.
47
,
092301
(
2006
).
37.
A.
Raab
,
J. Math. Phys.
45
,
4791
(
2004
).
38.
J.
Almeida
and
J.
Teixeira
,
J. Math. Phys.
45
,
1
(
2004
).
39.
T.
Nakamura
,
J. Math. Phys.
41
,
5209
(
2000
).
40.
B.
Simon
,
Proc. - R. Soc. Edinburgh, Sect. A: Math.
79
,
267
(
1978
).
41.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics
(
Academic Press
,
New York
,
1980
), Vol.
II
.
42.
G.
Teschl
,
Mathematical Methods in Quantum Mechanics: With Applications to Schrödinger Operators
(
Academic Mathematical Society
,
Providence, RI
,
2009
).
43.
P. D.
Hislop
and
I. E.
Sigal
,
Introduction to Spectral Theory: With Applications to Schrödinger Operators
(
Springer-Verlag
,
1996
).
44.
J.-P.
Aubin
and
I.
Ekeland
,
Applied Nonlinear Functional Analysis
(
Wiley
,
New York
,
1984
) (reprinted by Dover, Mineola, NY, 2006).
45.
W.
Schirotzek
,
Nonsmooth Analysis
(
Springer
,
Berlin, New York
,
2007
).
46.
J.-P.
Aubin
and
H.
Frankowska
,
Set-Valued Analysis
(
Birkhäuser
,
Boston
,
2009
).
47.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics. Vol. IV: Analysis of Operators
(
Academic Press
,
New York
,
1978
).
48.
E. H.
Lieb
and
M.
Loss
,
Analysis
(
American Mathematical Society
,
Providence, RI
,
1997
).
You do not currently have access to this content.