We investigate the mathematical structure of unit systems and the relations between them. Looking over the entire set of unit systems, we can find a mathematical structure that is called preorder(or quasi-order). For some pair of unit systems, there exists a relation of preorder such that one unit system is transferable to the other unit system. The transfer (or conversion) is possible only when all of the quantities distinguishable in the latter system are always distinguishable in the former system. By utilizing this structure, we can systematically compare the representations in different unit systems. Especially, the equivalence class of unit systems (EUS) plays an important role because the representations of physical quantities and equations are of the same form in unit systems belonging to an EUS. The dimension of quantities is uniquely defined in each EUS. The EUS’s form a partially ordered set. Using these mathematical structures, unit systems and EUS’s are systematically classified and organized as a hierarchical tree.

1.
Bureau International des Poids et Mesures
,
The International System of Units (SI)
, 8th ed. (
BIMP
,
Pavillon de Breteuil
,
2006
).
2.
S. V.
Gupta
,
Units of Measurement: Past, Present and Future. International System of Units
(
Springer
,
Heidelberg
,
2009
).
3.
R. T.
Birge
,
Am. Phys. Teach.
2
,
41
(
1934
).
4.
R. T.
Birge
,
Am. Phys. Teach.
3
,
171
(
1935
).
5.
A.
Sommerfeld
,
Electrodynamics
(
Academic Press
,
New York
,
1952
).
6.
M. J.
Duff
,
L. B.
Okun
, and
G.
Veneziano
,
J. High Energy Phys.
3
,
023
(
2002
).
7.
F. W.
Hehl
and
Y. N.
Obukhov
,
Gen. Relativ. Gravit.
37
,
733
(
2005
).
8.
E. A.
Guggenheim
,
Philos. Mag. (Ser. 7)
33
,
479
(
1942
).
9.
S.
Roman
,
Lattices and Ordered Sets
(
Springer
,
New York
,
2008
).
10.
N.
Bourbaki
,
Theory of Sets
(
Springer
,
Berlin
,
2004
).
11.
E.
Buckingham
,
Phys. Rev.
4
,
345
(
1914
).
12.
P. W.
Bridgman
,
Dimensional Analysis
(
Yale University Press
,
New Haven
,
1922
).
13.
G. W.
Bluman
and
S.
Kumei
,
Symmetries and Differential Equations
(
Springer
,
New York
,
1989
).
14.
A. W.
Porter
,
The Method of Dimensions
, 2nd ed. (
Methuen
,
London
,
1943
).
15.
J. C.
Maxwell
,
A Treatise on Electricity and Magnetism
, 3rd ed. (
Dover
,
New York
,
1954
), Vol.
1
, pp.
1
6
.
16.
E. J.
Post
,
Found. Phys.
12
,
169
(
1982
) and the references therein.
17.
J. A.
Schouten
,
Tensor Analysis for Physicists
, 2nd ed. (
Dover
,
New York
,
1989
).
18.
S.
MacLane
and
G.
Birkhoff
,
Algebra
, 3rd ed. (
AMS Chelsea
,
Providence
,
1999
).
19.
J. C.
Maxwell
,
A Treatise on Electricity and Magnetism
, 3rd ed. (
Dover
,
New York
,
1954
), Vol.
2
, pp.
263
269
.
20.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York
,
1998
), Appendix.
21.
M.
Kitano
,
IEICE Trans. Electron.
E92-C
,
3
(
2009
).
23.
A. E.
Kennelly
,
Proc. Natl. Acad. Sci. U.S.A.
17
,
147
(
1931
).
24.
S. A.
Schelkunoff
,
Bell Syst. Tech. J.
17
,
17
(
1938
).
You do not currently have access to this content.