It is shown that solutions of the second-order decoupled radial Dirac equations satisfy Ermakov-type invariants. These invariants lead to amplitude-phase-type representations of the radial spinor solutions, with exact relations between their amplitudes and phases. Implications leading to a Bohr-Sommerfeld quantization condition for bound states, and a few particular atomic/ionic and nuclear/hadronic bound-state situations are discussed.

1.
C. J.
Eliezer
and
A.
Gray
,
SIAM J. Appl. Math.
30
,
463
(
1976
).
2.
P. G. L.
Leach
,
SIAM J. Appl. Math.
34
,
496
(
1978
).
4.
H.
Rosu
,
P.
Espinoza
, and
M.
Reyes
,
Nuovo Cimento B
114
,
1439
(
1999
).
7.
K. S.
Govinder
,
C.
Athorne
, and
P. G. L.
Leach
,
J. Phys. A
26
,
4035
(
1993
).
9.
A.
Steen
,
Overs. Danske Vidensk. Selsk. Forh.
1
12
(
1874
).
10.
V. P.
Ermakov
,
Univ. Izv. Kiev
No.
9
,
1
(
1880
).
11.
H. R.
Lewis
,
Phys. Rev. Lett.
18
,
510
Erratum 626 (
1967
);
H. R.
Lewis
,
J. Math. Phys.
9
,
1976
(
1968
);
H. R.
Lewis
and
P. G. L.
Leach
,
J. Math. Phys.
23
,
2371
(
1982
).
12.
H. R.
Lewis
and
W. B.
Riesenfeld
,
J. Math. Phys.
10
,
1458
(
1969
).
13.
A.
Matzkin
,
Phys. Rev. A
63
,
012103
(
2000
);
A.
Matzkin
,
J. Phys. A
34
,
7833
7847
(
2001
).
14.
J. F.
Carinena
and
J.
de Lucas
,
Int. J. Geom. Methods Mod. Phys.
6
,
683
(
2009
);
15.
16.
E.
Pinney
,
Proc. Am. Math. Soc.
1
,
681
(
1950
).
17.
18.
19.
20.
H. J.
Korsch
and
H.
Laurent
,
J. Phys. B
14
,
4213
(
1981
).
21.
K-E
Thylwe
and
S.
Linnæus
,
Phys. Scr.
84
,
025006
(
2011
).
22.
N.
Fröman
and
P. O.
Fröman
,
J. Math. Phys.
18
,
96
(
1977
).
23.
24.
K.-E.
Thylwe
and
P.
McCabe
,
J. Phys. A: Math. Theor.
44
,
275305
(
2011
).
25.
S.
Belov
,
K.-E.
Thylwe
,
M.
Marletta
,
A.
Msezane
, and
S.
Naboko
,
J. Phys. A: Math. Theor.
43
,
365301
(
2010
).
26.
J. N.
Ginocchio
,
Phys. Rep.
414
,
165
261
(
2005
).
27.
W. C.
Qiang
,
R. S.
Zhou
, and
Y.
Gao
,
J. Phys. A: Math. Theor.
40
,
1677
(
2007
).
29.
K.-E.
Thylwe
and
P.
McCabe
,
J. Phys. A: Math. Theor.
45
,
135302
(
2012
).
You do not currently have access to this content.