For the rational Baker-Akhiezer functions associated with special arrangements of hyperplanes with multiplicities we establish an integral identity, which may be viewed as a generalisation of the self-duality property of the usual Gaussian function with respect to the Fourier transformation. We show that the value of properly normalised Baker-Akhiezer function at the origin can be given by an integral of Macdonald-Mehta type and explicitly compute these integrals for all known Baker-Akhiezer arrangements. We use the Dotsenko-Fateev integrals to extend this calculation to all deformed root systems, related to the non-exceptional basic classical Lie superalgebras.

1.
Y.
Berest
, “
Solution of a restricted Hadamard problem on Minkowski spaces
,”
Commun. Pure Appl. Math.
50
(
10
),
1019
1052
(
1997
).
2.
Y.
Berest
,
T.
Cramer
, and
F.
Eshmatov
, “
Heat kernel coefficients for two-dimensional Schrödinger operators
,”
Commun. Math. Phys.
283
,
853
860
(
2008
).
3.
O. A.
Chalykh
and
P.
Etingof
, “
Orthogonality relations and Cherednik identities for multivariable Baker-Akhiezer functions
,”
Adv. Math.
238
,
246
289
(
2013
);
4.
O. A.
Chalykh
,
M. V.
Feigin
, and
A. P.
Veselov
, “
New integrable generalizations of Calogero-Moser quantum problem
,”
J. Math. Phys.
39
(
2
),
695
703
(
1998
).
5.
O. A.
Chalykh
,
M. V.
Feigin
, and
A. P.
Veselov
, “
Multidimensional Baker-Akhiezer functions and Huygens' principle
,”
Commun. Math. Phys.
206
,
533
566
(
1999
).
6.
O. A.
Chalykh
and
A. P.
Veselov
, “
Commutative rings of partial differential operators and Lie algebras
,”
Commun. Math. Phys.
126
,
597
611
(
1990
).
7.
Vl. S.
Dotsenko
and
V. A.
Fateev
, “
Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge c ⩽ 1
,”
Nucl. Phys. B
251
,
691
734
(
1985
).
8.
P.
Etingof
, “
A uniform proof of the Macdonald-Mehta-Opdam identity for finite Coxeter groups
,”
Math. Res. Lett.
17
,
275
282
(
2010
).
9.
P.
Etingof
and
V.
Ginzburg
, “
On m-quasi-invariants of a Coxeter group
,”
Mosc. Math. J.
2
(
3
),
555
566
(
2002
).
10.
P.
Etingof
and
A.
Varchenko
, “
Orthogonality and qKZB-heat equation for traces of Uq(g)-intertwiners
,”
Duke Math. J.
128
(
1
),
83
117
(
2005
).
11.
M. V.
Feigin
and
D.
Johnston
, “
A class of Baker-Akhiezer arrangements
,” e-print arXiv:1212.3597.
12.
M. V.
Feigin
and
A. P.
Veselov
, “
Quasi-invariants of Coxeter groups and m-harmonic polynomials
,”
Int. Math. Res. Notices
2002
(
10
),
521
545
.
13.
M. V.
Feigin
and
A. P.
Veselov
, “
Quasi-invariants and quantum integrals of the deformed Calogero-Moser systems
,”
Int. Math. Res. Notices
2003
(
46
),
2487
2511
.
14.
G.
Felder
and
A. P.
Veselov
, “
Baker-Akhiezer function as iterated residue and Selberg-type integral
,”
Glasg. Math. J.
51
,
59
73
(
2009
).
15.
P. J.
Forrester
and
S. O.
Warnaar
, “
The importance of the Selberg integral
,”
Bull. Am. Math. Soc.
45
(
4
),
489
534
(
2008
).
16.
F. G.
Garvan
, “
Some Macdonald-Mehta integrals by brute force
,”
q-Series and Partitions
,
IMA Volumes in Mathematics and its Applications
Vol.
18
(
Springer
,
New York
,
1989
), pp.
77
98
.
17.
P. G.
Grinevich
and
S. P.
Novikov
, “
Singular finite-gap operators and indefinite metrics
,”
Russ. Math. Surveys
64
(
4
),
625
650
(
2009
).
18.
P. G.
Grinevich
and
S. P.
Novikov
, “
Singular solitons and indefinite metrics
,”
Dokl. Math.
83
(
1
),
56
58
(
2011
).
19.
J. E.
Humphreys
,
Reflection Groups and Coxeter Groups
(
Cambridge University Press
,
1990
).
20.
I. M.
Krichever
, “
Methods of algebraic geometry in the theory of nonlinear equations
,”
Usp. Mat. Nauk
32
(
6
),
183
208
(
1977
).
21.
I. G.
Macdonald
, “
The Poincaré series of a Coxeter group
,”
Math. Ann.
199
,
161
174
(
1972
).
22.
I. G.
Macdonald
, “
The volume of a compact Lie group
,”
Invent. Math.
56
,
93
95
(
1980
).
23.
I. G.
Macdonald
, “
Some conjectures for root systems
,”
SIAM J. Math. Anal.
13
,
988
1007
(
1982
).
24.
M. L.
Mehta
and
F. J.
Dyson
, “
Statistical theory of the energy levels of complex systems. V
,”
J. Math. Phys.
4
(
5
),
713
719
(
1963
).
25.
M. L.
Mehta
,
Random Matrices and Statistical Theory of Energy Levels
(
Academic Press
,
New York
,
1967
).
26.
M. L.
Mehta
, “
Problem 74-6, Three multiple integrals
,”
SIAM Rev.
16
,
256
257
(
1974
).
27.
E. M.
Opdam
, “
Some applications of hypergeometric shift operators
,”
Invent. Math.
98
,
1
18
(
1989
).
28.
E. M.
Opdam
, “
Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group
,”
Compos. Math.
85
,
333
373
(
1993
).
29.
R.
Sakamoto
,
J.
Shiraishi
,
D.
Arnaudon
,
L.
Frappat
, and
E.
Ragoucy
, “
Correspondence between conformal field theory and Calogero-Sutherland model
,”
Nucl. Phys. B
704
(
3
),
490
509
(
2005
).
30.
A. N.
Sergeev
and
A. P.
Veselov
, “
Deformed Calogero-Moser problems and Lie superalgebras
,”
Commun. Math. Phys.
245
(
2
),
249
278
(
2004
).
31.
A. P.
Veselov
,
K. L.
Styrkas
, and
O. A.
Chalykh
, “
Algebraic integrability for the Schrödinger equation and finite reflection groups
,”
Teor. Mat. Fiz.
94
(
2
),
253
275
(
1993
).
32.
A. P.
Veselov
,
M. V.
Feigin
, and
O. A.
Chalykh
, “
New integrable deformations of the quantum Calogero-Moser problem
,”
Russ. Math. Surveys
51
(
3
),
573
574
(
1996
).
You do not currently have access to this content.