For the rational Baker-Akhiezer functions associated with special arrangements of hyperplanes with multiplicities we establish an integral identity, which may be viewed as a generalisation of the self-duality property of the usual Gaussian function with respect to the Fourier transformation. We show that the value of properly normalised Baker-Akhiezer function at the origin can be given by an integral of Macdonald-Mehta type and explicitly compute these integrals for all known Baker-Akhiezer arrangements. We use the Dotsenko-Fateev integrals to extend this calculation to all deformed root systems, related to the non-exceptional basic classical Lie superalgebras.
REFERENCES
1.
Y.
Berest
, “Solution of a restricted Hadamard problem on Minkowski spaces
,” Commun. Pure Appl. Math.
50
(10
), 1019
–1052
(1997
).2.
Y.
Berest
, T.
Cramer
, and F.
Eshmatov
, “Heat kernel coefficients for two-dimensional Schrödinger operators
,” Commun. Math. Phys.
283
, 853
–860
(2008
).3.
O. A.
Chalykh
and P.
Etingof
, “Orthogonality relations and Cherednik identities for multivariable Baker-Akhiezer functions
,” Adv. Math.
238
, 246
–289
(2013
);e-print arXiV:1111.0515v1.
4.
O. A.
Chalykh
, M. V.
Feigin
, and A. P.
Veselov
, “New integrable generalizations of Calogero-Moser quantum problem
,” J. Math. Phys.
39
(2
), 695
–703
(1998
).5.
O. A.
Chalykh
, M. V.
Feigin
, and A. P.
Veselov
, “Multidimensional Baker-Akhiezer functions and Huygens' principle
,” Commun. Math. Phys.
206
, 533
–566
(1999
).6.
O. A.
Chalykh
and A. P.
Veselov
, “Commutative rings of partial differential operators and Lie algebras
,” Commun. Math. Phys.
126
, 597
–611
(1990
).7.
Vl. S.
Dotsenko
and V. A.
Fateev
, “Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge c ⩽ 1
,” Nucl. Phys. B
251
, 691
–734
(1985
).8.
P.
Etingof
, “A uniform proof of the Macdonald-Mehta-Opdam identity for finite Coxeter groups
,” Math. Res. Lett.
17
, 275
–282
(2010
).9.
P.
Etingof
and V.
Ginzburg
, “On m-quasi-invariants of a Coxeter group
,” Mosc. Math. J.
2
(3
), 555
–566
(2002
).10.
P.
Etingof
and A.
Varchenko
, “Orthogonality and qKZB-heat equation for traces of Uq(g)-intertwiners
,” Duke Math. J.
128
(1
), 83
–117
(2005
).11.
12.
M. V.
Feigin
and A. P.
Veselov
, “Quasi-invariants of Coxeter groups and m-harmonic polynomials
,” Int. Math. Res. Notices
2002
(10
), 521
–545
.13.
M. V.
Feigin
and A. P.
Veselov
, “Quasi-invariants and quantum integrals of the deformed Calogero-Moser systems
,” Int. Math. Res. Notices
2003
(46
), 2487
–2511
.14.
G.
Felder
and A. P.
Veselov
, “Baker-Akhiezer function as iterated residue and Selberg-type integral
,” Glasg. Math. J.
51
, 59
–73
(2009
).15.
P. J.
Forrester
and S. O.
Warnaar
, “The importance of the Selberg integral
,” Bull. Am. Math. Soc.
45
(4
), 489
–534
(2008
).16.
F. G.
Garvan
, “Some Macdonald-Mehta integrals by brute force
,” q-Series and Partitions
, IMA Volumes in Mathematics and its Applications
Vol. 18
(Springer
, New York
, 1989
), pp. 77
–98
.17.
P. G.
Grinevich
and S. P.
Novikov
, “Singular finite-gap operators and indefinite metrics
,” Russ. Math. Surveys
64
(4
), 625
–650
(2009
).18.
P. G.
Grinevich
and S. P.
Novikov
, “Singular solitons and indefinite metrics
,” Dokl. Math.
83
(1
), 56
–58
(2011
).19.
J. E.
Humphreys
, Reflection Groups and Coxeter Groups
(Cambridge University Press
, 1990
).20.
I. M.
Krichever
, “Methods of algebraic geometry in the theory of nonlinear equations
,” Usp. Mat. Nauk
32
(6
), 183
–208
(1977
).21.
I. G.
Macdonald
, “The Poincaré series of a Coxeter group
,” Math. Ann.
199
, 161
–174
(1972
).22.
I. G.
Macdonald
, “The volume of a compact Lie group
,” Invent. Math.
56
, 93
–95
(1980
).23.
I. G.
Macdonald
, “Some conjectures for root systems
,” SIAM J. Math. Anal.
13
, 988
–1007
(1982
).24.
M. L.
Mehta
and F. J.
Dyson
, “Statistical theory of the energy levels of complex systems. V
,” J. Math. Phys.
4
(5
), 713
–719
(1963
).25.
M. L.
Mehta
, Random Matrices and Statistical Theory of Energy Levels
(Academic Press
, New York
, 1967
).26.
M. L.
Mehta
, “Problem 74-6, Three multiple integrals
,” SIAM Rev.
16
, 256
–257
(1974
).27.
E. M.
Opdam
, “Some applications of hypergeometric shift operators
,” Invent. Math.
98
, 1
–18
(1989
).28.
E. M.
Opdam
, “Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group
,” Compos. Math.
85
, 333
–373
(1993
).29.
R.
Sakamoto
, J.
Shiraishi
, D.
Arnaudon
, L.
Frappat
, and E.
Ragoucy
, “Correspondence between conformal field theory and Calogero-Sutherland model
,” Nucl. Phys. B
704
(3
), 490
–509
(2005
).30.
A. N.
Sergeev
and A. P.
Veselov
, “Deformed Calogero-Moser problems and Lie superalgebras
,” Commun. Math. Phys.
245
(2
), 249
–278
(2004
).31.
A. P.
Veselov
, K. L.
Styrkas
, and O. A.
Chalykh
, “Algebraic integrability for the Schrödinger equation and finite reflection groups
,” Teor. Mat. Fiz.
94
(2
), 253
–275
(1993
).32.
A. P.
Veselov
, M. V.
Feigin
, and O. A.
Chalykh
, “New integrable deformations of the quantum Calogero-Moser problem
,” Russ. Math. Surveys
51
(3
), 573
–574
(1996
).© 2013 AIP Publishing LLC.
2013
AIP Publishing LLC
You do not currently have access to this content.