Elliptic soliton solutions, comprising a soliton-type hierarchy of functions based on an elliptic seed solution, are constructed using elliptic Cauchy matrices, for a family of integrable lattice equations of Kadomtsev-Petviashvili (KP) type. This family consists of the lattice KP, modified KP, and Schwarzian KP equations as well as Hirota's bilinear KP equation, and their successive continuum limits. The reduction to the elliptic soliton solutions of KdV type lattice equations is also discussed.

1.
Adler
,
V. E.
,
Bobenko
,
A. I.
, and
Suris
,
Y. B.
, “
Classification of integrable equations on quad-graphs, the consistency approach
,”
Commun. Math. Phys.
233
,
513
(
2003
).
2.
Adler
,
V. E.
,
Bobenko
,
A. I.
, and
Suris
,
Y. B.
, “
Classification of integrable discrete equations of octahedron type
,”
Int. Math. Res. Notices
2011
,
17
.
3.
Airault
,
H.
,
McKean
,
H. P.
, and
Moser
,
J.
, “
Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem
,”
Commun. Pure Appl. Math.
30
,
95
(
1977
).
4.
Akhiezer
,
I. N.
, “
Elements of the theory of elliptic functions
,” in
AMS Translations of Mathematical Monographs
, Vol.
79
(
American Mathematical Society
,
1990
) (translated from the Russian edition by H. H. McFaden, and edited by
B.
Silver
).
5.
Atkinson
,
J.
and
Joshi
,
N.
, “
The Schwarzian variable associated with discrete KdV-type equations
,”
Nonlinearity
25
,
1851
(
2012
).
6.
Atkinson
,
J.
and
Nijhoff
,
F. W.
, “
A constructive approach to the soliton solutions of integrable quadrilateral lattice equations
,”
Commun. Maths. Phys.
299
,
283
(
2010
).
7.
Bogdanov
,
L. V.
and
Konopelchenko
,
B. G.
, “
Analytic-bilinear approach to integrable hierarchies. II. Multicomponent KP and 2D Toda lattice hierarchies
,”
J. Math. Phys.
39
,
4701
(
1998
).
8.
Capel
,
W. H.
,
Wiersma
,
G. L.
, and
Nijhoff
,
W. F.
, “
Linearizing integral transform for the multicomponent lattice KP
,”
Physica A
138
,
76
(
1986
).
9.
Chakravarty
,
S.
and
Kodama
,
Y.
, “
Classification of the line-soliton solutions of KPII
,”
J. Phys. A: Math. Theor.
41
,
275209
(
2008
).
10.
Deift
,
P.
,
Lund
,
F.
, and
Trubowitz
,
E.
, “
Nonlinear wave equations and constrained harmonic motion
,”
Commun. Math. Phys.
74
,
141
(
1980
).
11.
Doliwa
,
A.
, “
Desargues maps and the Hirota-Miwa equation
,”
Proc. R. Soc. A
466
,
1177
(
2010
).
12.
Dorfman
,
I. Ya.
and
Nijhoff
,
W. F.
, “
On a (2+1)-dimensional version of the Krichever-Novikov equation
,”
Phys. Lett. A
157
,
107
(
1991
).
13.
Frobenius
,
G.
, “
Über die elliptischen Funktionen zweiter Art
,”
J. Reine Angew. Math.
93
,
53
68
(
1882
).
14.
Gragg
,
W. B.
, “
The Pade table and its relation to certain algorithms of numerical analysis
,”
SIAM Rev.
14
,
1
(
1972
).
15.
Hirota
,
R.
, “
Discrete anologue of a generalised Toda equation
,”
J. Phys. Soc. Jpn.
50
,
3785
(
1981
).
16.
Kac
,
V. G.
,
Infinite Dimensional Lie Algebras
(
Cambridge University Press
,
1994
).
17.
King
,
A. D.
and
Schief
,
W. K.
, “
Tetrahedra, octahedra and cubo-octahedra: Integrable geometry of multi-ratios
,”
J. Phys. A
36
,
785
(
2003
).
18.
Kodama
,
Y.
, “
Young diagrams and N-soliton solutions of the KP equation
,”
J. Phys. A
37
,
11169
(
2004
).
19.
Konopelchenko
,
B. G.
and
Schief
,
W. K.
, “
Menelaus' theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy
,”
J. Phys. A
35
,
6125
(
2002
).
20.
Krichever
,
I. M.
, “
Rational solutions of the Kadomtsev-Petviashvili equation and integrable sys tems of N particles on a line
,”
Funct. Anal. Appl.
12
,
59
61
(
1978
).
21.
Krichever
,
I.
,
Lipan
,
O.
,
Wiegmann
,
P.
, and
Zabrodin
,
A.
, “
Quantum integrable models and discrete classical Hirota equations
,”
Commun. Math. Phys.
188
,
267
(
1997
).
22.
Miwa
,
T.
, “
On Hirota's difference equations
,”
Proc. Jpn. Acad.
58
,
9
(
1982
).
23.
Nijhoff
,
F. W.
, “
Theory of integrable three-dimensional lattice equations
,”
Lett. Math. Phys.
9
,
235
241
(
1985
).
24.
Nijhoff
,
F. W.
and
Atkinson
,
J.
, “
Elliptic N-soliton solutions of ABS lattice equations
,”
Int. Math. Res. Notices
2010
,
3837
.
25.
Nijhoff
,
F. W.
,
Atkinson
,
J.
, and
Hietarinta
,
J.
, “
Soliton solutions for ABS latticeequations: I. Cauchy matrix approach
,”
J. Phys. A
42
,
404005
(
2009
) (Special Issue dedicated to the Darboux Days).
26.
Nijhoff
,
F. W.
and
Capel
,
H. W.
, “
The direct linearisation approach to hierarchies of inte- grable PDEs in 2 + 1 dimensions: I. Lattice equations and the differential-difference hierarchies
,”
Inverse Probl.
6
,
567
(
1990
).
27.
Nijhoff
,
F. W.
,
Capel
,
H. W.
, and
Wiersma
,
G. L.
, “
Integrable lattice systems in two and three dimensions
,” in
Geometric Aspects of the Einstein Equations and Integrable Systems
,
Lecture Notes in Physics
Vol.
239
, edited by
R.
Martini
(
Springer Verlag
,
Berlin
,
1985
), pp.
263
302
.
28.
Nijhoff
,
F. W.
,
Capel
,
H. W.
,
Wiersma
,
G. L.
, and
Quispel
,
G. R. W.
, “
Backlund transformations and three-dimensional lattice equations
,”
Phys. Lett. A
105
,
267
(
1984
).
29.
Nijhoff
,
F. W.
,
Ragnisco
,
O.
, and
Kuznetsov
,
V. B.
, “
Integrable time-discretization of the Ruijsenaars-Schneider model
,”
Commun. Math. Phys.
176
,
681
(
1996
).
30.
Noumi
,
M.
and
Yamada
,
Y.
, “
Affine Weyl groups, discrete dynamical systems and Painlevé equations
,”
Commun. Math. Phys.
217
,
315
(
2001
).
31.
Ruijsenaars
,
S. N. M.
, “
Complete integrability of relativistic Calogero-Moser systems and elliptic function identities
,”
Commun. Math. Phys.
110
,
191
(
1987
).
32.
Ramani
,
A.
,
Grammaticos
,
B.
, and
Satsuma
,
J.
, “
Integrability of multidimensional discrete systems
,”
Phys. Lett. A
169
,
323
(
1992
).
33.
Ruijsenaars
,
S. N. M.
and
Schneider
,
H.
, “
A new class of integrable systems and its relation to solitons
,”
Ann. Phys.
170
,
370
(
1986
).
34.
Wiersma
,
G. L.
and
Capel
,
W. H.
, “
Lattice equations, hierarchies and Hamiltonian structures: The Kadomtesv-Petviashvili equation
,”
Phys. Lett. A
124
,
124
(
1987
).
35.
Wiersma
,
G. L.
and
Capel
,
W. H.
, “
Lattice equations, hierarchies and Hamiltonian structures: II, KP-type of hierarchies on 2D lattices
,”
Physica A
149
,
49
(
1988
);
Wiersma
,
G. L.
and
Capel
,
W. H.
, “
Lattice equations, hierarchies and Hamiltonian structures: III. The 2D toda and KP hierarchies
,”
Physica A
149
,
75
(
1988
).
36.
Yoo-Kong
,
S.
, “
Calogero-Moser type systems, associated KP systems, and Lagrangian structure
,” PhD thesis (
University of Leeds
,
2011
).
37.
Yoo-Kong
,
S.
and
Nijhoff
,
F. W.
, “
Discrete-time Ruijsenaars-Schneider system and Lagrangian 1-form structure
,”
Journal of Nonlinear Mathematical Physics
(submitted).
38.
Zabrodin
,
A.
, “
Discrete Hirota's equation in quantum integrable models
,”
Theor. Math. Phys.
113
,
1347
(
1997
).
You do not currently have access to this content.