We consider a recently proposed nonlinear Schroedinger equation exhibiting soliton-like solutions of the power-law form

$e_q^{i(kx-wt)}$
eqi(kxwt)⁠, involving the q-exponential function which naturally emerges within nonextensive thermostatistics [
$e_q^z \equiv [1+(1\break-q)z]^{1/(1-q)}$
eqz[1+(1q)z]1/(1q)
, with
$e_1^z=e^z$
e1z=ez
]. Since these basic solutions behave like free particles, obeying p = ℏk, E = ℏω, and E = p2/2m (1 ⩽ q < 2), it is relevant to investigate how they change under the effect of uniform acceleration, thus providing the first steps towards the application of the aforementioned nonlinear equation to the study of physical scenarios beyond free particle dynamics. We investigate first the behaviour of the power-law solutions under Galilean transformation and discuss the ensuing Doppler-like effects. We consider then constant acceleration, obtaining new solutions that can be equivalently regarded as describing a free particle viewed from an uniformly accelerated reference frame (with acceleration a) or a particle moving under a constant force −ma. The latter interpretation naturally leads to the evolution equation
$i\hbar \frac{\partial }{\partial t}\left( \frac{\Phi }{\Phi _0} \right) \,\, = \,\, - \frac{1}{2-q}\frac{\hbar ^2}{2m} \frac{\partial ^2}{\partial x^2} \left[\left( \frac{\Phi }{\Phi _0} \right)^{2-q}\right] + V(x)\left( \frac{\Phi }{\Phi _0} \right)^{q}$
itΦΦ0=12q22m2x2ΦΦ02q+V(x)ΦΦ0q
with V(x) = max. Remarkably enough, the potential V couples to Φq, instead of coupling to Φ, as happens in the familiar linear case (q = 1).

1.
C.
Sulem
and
P.-L.
Sulem
,
The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse
(
Springer
,
New York
,
1999
).
2.
T. D.
Frank
,
Nonlinear Fokker-Planck Equations: Fundamentals and Applications
(
Springer
,
Berlin
,
2005
).
3.
A. C.
Scott
,
The Nonlinear Universe
(
Springer
,
Berlin
,
2007
).
4.
A. D.
Polyanin
and
V. F.
Zaitsev
,
Handbook of Nonlinear Partial Differential Equations
(
Chapman and Hall/CRC
,
Boca Raton
,
2004
).
5.
F. D.
Nobre
,
M. A.
Rego-Monteiro
, and
C.
Tsallis
, “
Nonlinear relativistic and quantum equations with a common type of solution
,”
Phys. Rev. Lett.
106
,
140601
(
2011
).
6.
F. D.
Nobre
,
M. A.
Rego-Monteiro
, and
C.
Tsallis
, “
A generalized nonlinear Schroedinger equation: Classical field-theoretic approach
,”
EPL
97
,
41001
(
2012
).
7.
J. S.
Andrade
Jr.
,
G. F. T.
da Silva
,
A. A.
Moreira
,
F. D.
Nobre
, and
E. M. F.
Curado
, “
Thermostatistics of overdamped motion of interacting particles
,”
Phys. Rev. Lett.
105
,
260601
(
2010
);
[PubMed]
Y.
Levin
and
R.
Pakter
, “
Comment on: Thermostatistics of overdamped motion of interacting particles
,”
Phys. Rev. Lett.
107
,
088901
(
2011
);
[PubMed]
J. S.
Andrade
 Jr.
,
G. F. T.
da Silva
,
A. A.
Moreira
,
F. D.
Nobre
, and
E. M. F.
Curado
, “
Andrade et al. reply
,”
Phys. Rev. Lett.
107
,
088902
(
2011
).
[PubMed]
8.
M. S.
Ribeiro
,
F. D.
Nobre
, and
E. M. F.
Curado
, “
Time evolution of interacting vortices under overdamped motion
,”
Phys. Rev. E
85
,
021146
(
2012
).
9.
C.
Tsallis
, “
Possible generalization of Boltzmann-Gibbs statistics
,”
J. Stat. Phys.
52
,
479
(
1988
).
10.
C.
Tsallis
,
Introduction to Nonextensive Statistical Mechanics
(
Springer
,
New York
,
2009
).
11.
C.
Beck
, “
Generalised information and entropy measures in physics
,”
Contemp. Phys.
50
,
495
(
2009
).
12.
A.
Carati
,
S. L.
Cacciatori
, and
L.
Galgani
, “
Discrete matter, far fields, and dark matter
,”
EPL
83
,
59002
(
2008
).
13.
S.
Umarov
,
C.
Tsallis
, and
S.
Steinberg
,
Milan J. Math.
76
,
307
(
2008
);
S.
Umarov
,
C.
Tsallis
,
M.
Gell-Mann
, and
S.
Steinberg
, “
Generalization of symmetric α-stable Lévy distributions for q > 1
,”
J. Math. Phys.
51
,
033502
(
2010
).
[PubMed]
14.
A. R.
Plastino
and
A.
Plastino
, “
Non-extensive statistical mechanics and generalized Fokker-Planck equation
,”
Physica A
222
,
347
(
1995
);
C.
Tsallis
and
D. J.
Bukman
, “
Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis
,”
Phys. Rev. E
54
,
R2197
(
1996
).
15.
P.
Douglas
,
S.
Bergamini
, and
F.
Renzoni
, “
Tunable Tsallis distributions in dissipative optical lattices
,”
Phys. Rev. Lett.
96
,
110601
(
2006
).
16.
B.
Liu
and
J.
Goree
, “
Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma
,”
Phys. Rev. Lett.
100
,
055003
(
2008
).
17.
R. G.
DeVoe
, “
Power-law distributions for a trapped ion interacting with a classical buffer gas
,”
Phys. Rev. Lett.
102
,
063001
(
2009
).
18.
R. M.
Pickup
,
R.
Cywinski
,
C.
Pappas
,
B.
Farago
, and
P.
Fouquet
, “
Generalized spin-glass relaxation
,”
Phys. Rev. Lett.
102
,
097202
(
2009
).
19.
V.
Khachatryan
 et al (
CMS Collaboration
), “
Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at
$\sqrt{s} = 7\ {\rm TeV}$
s=7 TeV
,”
Phys. Rev. Lett.
105
,
022002
(
2010
).
20.
E. P.
Borges
, “
On a generalization of circular and hyperbolic functions
,”
J. Phys. A
31
,
5281
(
1998
).
21.
M.
Jauregui
and
C.
Tsallis
, “
New representations of π and Dirac delta using the nonextensive-statistical-mechanics q-exponential function
,”
J. Math. Phys.
51
,
063304
(
2010
);
A.
Chevreuil
,
A.
Plastino
, and
C.
Vignat
, “
On a conjecture about Dirac's delta representation using q-exponentials
,”
J. Math. Phys.
51
,
093502
(
2010
).
22.
G.
Kaniadakis
,
A.
Lavagno
, and
P.
Quarati
, “
Wigner equation for particles obeying an exclusion-inclusion principle
,”
Phys. Rev. E
57
,
1395
(
1998
).
23.
A.
Peres
,
Quantum Theory: Concepts and Methods
(
Kluwer
,
Dordrecht
,
1993
).
You do not currently have access to this content.