A Lie system is a system of first-order differential equations admitting a superposition rule, i.e., a map that expresses its general solution in terms of a generic family of particular solutions and certain constants. In this work, we use the geometric theory of Lie systems to prove that the explicit integration of second- and third-order Kummer-Schwarz equations is equivalent to obtaining a particular solution of a Lie system on

$SL(2,\mathbb {R})$
SL(2,R)⁠. This same result can be extended to Riccati, Milne-Pinney, and to the here defined generalised Kummer-Schwarz equations, which include several types of Kummer-Schwarz equations as particular cases. We demonstrate that all the above-mentioned equations related to the same Lie system on
$SL(2,\mathbb {R})$
SL(2,R)
can be integrated simultaneously, which retrieves and generalizes in a unified and simpler manner previous results appearing in the literature. As a byproduct, we recover various properties of the Schwarzian derivative.

1.
P. D.
Lax
, “
Integrals of nonlinear equations of evolution and solitary waves
,”
Commun. Pure Appl. Math.
21
,
467
490
(
1968
).
2.
P. D.
Lax
and
R. S.
Phillips
,
Scattering Theory for Automorphic Functions
,
Annals of Mathematics Studies
Vol.
87
(
Princeton University
,
1976
).
3.
P.
Painlevé
, “
Mémoire sur les équations différentielles dont l'intégrale générale est uniforme
,”
Bull. Soc. Math. France
28
,
201
261
(
1900
).
4.
P.
Painlevé
, “
Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme
,”
Acta Math.
25
,
1
85
(
1902
).
5.
S.
Lie
and
G.
Scheffers
,
Vorlesungen über Continuierliche Gruppen mit Geometrischen und Anderen Anwendungen
(
Teubner
,
1893
).
6.
M. E.
Vessiot
, “
Sur une classe d'équations différentielles
,”
Ann. Sci. École Norm. Sup.
10
,
53
64
(
1893
).
7.
M. E.
Vessiot
, “
Sur une classe d'équations différentielles
,”
Acad. Sci., Paris, C. R.
116
,
959
961
(
1893
).
8.
M. E.
Vessiot
, “
Sur les systèmes d'équations différentielles du premier ordre qui ont des systèmes fondamentaux d'intégrales
,”
Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys.
8
,
H1
H33
(
1894
).
9.
A.
Guldberg
, “
Sur les équations différentielles ordinaires qui possèdent un système fondamental d'intégrales
,”
Acad. Sci., Paris, C. R.
116
,
964
965
(
1893
).
10.
P.
Winternitz
, “
Lie groups and solutions of nonlinear differential equations
,”
Lect. Notes Phys.
189
,
263
305
(
1983
).
11.
J. F.
Cariñena
,
J.
Grabowski
, and
G.
Marmo
,
Lie–Scheffers Systems: A Geometric Approach
(
Bibliopolis
,
2000
).
12.
J. F.
Cariñena
,
J.
Grabowski
, and
G.
Marmo
, “
Superposition rules, Lie theorem and partial differential equations
,”
Rep. Math. Phys.
60
,
237
258
(
2007
).
13.
J. F.
Cariñena
and
J.
de Lucas
,
Lie Systems: Theory, Generalisations and Applications. Dissertationes Math
(
Institute of Mathematics of the Polish Academy of Sciences
,
2011
), Vol.
479
.
14.
J. F.
Cariñena
and
A.
Ramos
, “
Integrability of the Riccati equation from a group-theoretical viewpoint
,”
Int. J. Mod. Phys. A
14
,
1935
1951
(
1999
).
15.
J.
Harnad
,
P.
Winternitz
, and
R. L.
Anderson
, “
Superposition principles for matrix Riccati equations
,”
J. Math. Phys.
24
,
1062
1072
(
1983
).
16.
S.
Lafortune
and
P.
Winternitz
, “
Superposition formulas for pseudounitary matrix Riccati equations
,”
J. Math. Phys.
37
,
1539
1550
(
1996
).
17.
R. F.
Espinoza
and
Yu.
Vorobiev
, “
On dynamical and geometric phases of time-periodic linear Euler equations
,”
Russ. J. Math. Phys.
12
,
326
349
(
2005
).
18.
R.
Flores-Espinoza
, “
Monodromy factorization for periodic Lie systems and reconstruction phases
,”
AIP Conf. Proc.
1079
,
189
195
(
2008
).
19.
R.
Flores-Espinoza
,
J.
de Lucas
, and
Y. M.
Vorobiev
, “
Phase splitting for periodic lie systems
,”
J. Phys. A
43
,
205208
(
2010
).
20.
R. Flores
Espinoza
, “
Periodic first integrals for Hamiltonian systems of Lie type
,”
Int. J. Geom. Methods Mod. Phys.
8
,
1169
1177
(
2011
).
21.
J. A.
Lázaro-Camí
and
J. P.
Ortega
, “
Superposition rules and stochastic Lie-Scheffers systems
,”
Ann. Inst. Henri Poincaré, Probab. Stat.
45
,
910
931
(
2009
).
22.
J.
Beckers
,
L.
Gagnon
,
V.
Hussin
, and
P.
Winternitz
, “
Superposition formulas for nonlinear superequations
,”
J. Math. Phys.
31
,
2528
2534
(
1990
).
23.
J. F.
Cariñena
and
A.
Ramos
, “
Applications of Lie systems in quantum mechanics and control theory
,” in
Classical and Quantum Integrability
(
Polish Academy of Science
,
Banach Center
,
2003
), Vol.
59
, pp.
143
162
.
24.
J. F.
Cariñena
,
J.
Grabowski
, and
J.
de Lucas
, “
Superposition rules for higher-order systems and their applications
,”
J. Phys. A
45
,
185202
(
2012
).
25.
P.
Guha
,
A. G.
Choudhury
, and
B.
Grammaticos
, “
Dynamical studies of equations from the Gambier family
,”
Symmetry, Integr. Geom.: Methods Appl.
7
,
028
(
2011
).
26.
P. G. L.
Leach
and
K.
Andriopoulos
, “
The Ermakov equation: A commentary
,”
Appl. Anal. Discrete Math.
2
,
146
157
(
2008
).
27.
L. M.
Berkovich
, “
Transformation of Sturm–Liouville differential equations
,”
Funct. Anal. Appl.
16
,
190
192
(
1982
).
28.
L. M.
Berkovich
, “
Canonical forms of ordinary linear differential equations
,”
Arch. Math (Brno)
24
,
25
42
(
1988
).
29.
L. M.
Berkovich
and
N. H.
Rozov
, “
Transformations of linear differential equations of second order and adjoined nonlinear equations
,”
Arch. Math.
33
,
75
98
(
1997
).
30.
L. M.
Berkovich
, “
Method of factorization of ordinary differential operators and some of its applications
,”
Appl. Anal. Discrete Math.
1
,
122
149
(
2007
).
31.
M.
Crampin
, “
Homogeneous systems of higher-order ordinary differential equations
,”
Commun. Math.
18
,
37
50
(
2010
).
32.
V.
Ovsienko
and
S.
Tabachnikov
, “
What is the Schwarzian derivative
,”
Not. Am. Math. Soc.
56
,
34
36
(
2009
).
33.
M.
Tabor
,
Chaos and Integrability in Nonlinear Dynamics. An Introduction
(
Wiley
,
1989
).
34.
Í.
Aslan
, “
The Exp-function approach to the Schwarzian Korteweg de Vries equation
,”
Comput. Math. Appl.
59
,
2896
2900
(
2010
).
35.
A. J.
Marshall
, “
A new, harder proof that continuous functions with Schwarz derivative 0 are lines
,” in
Fourier Analysis
,
Lecture Notes in Pure and Applied Mathematics
Vol.
157
(
Dekker
,
1994
), pp.
35
46
.
36.
S.
Tabachnikov
, “
On zeros of the Schwarzian derivative
,” in
Topics in Singularity Theory
,
American Mathematical Society Translations: Series 2
Vol.
180
(
American Mathematical Society
,
1997
), pp.
229
239
.
37.
R.
Conte
, “
Singularities of differential equations and integrability
,” in
An Introduction to Methods of Complex Analysis and Geometry for Classical Mechanics and Non-linear Waves
(
Frontières
,
Gif-sur- Yvette
,
1994
), pp.
49
143
.
38.
L. M.
Berkovič
, “
Gylden-Meščerski
$\hbox{\v{\i}}$
ǐ
problem
,”
Celest. Mech.
24
,
407
429
(
1981
).
39.
A. A.
Bekov
, “
Integrable cases and trajectories in the Gylden-Meshcherski
$\hbox{\v{\i}}$
ǐ
problem
,”
Soviet Astron. Lett.
33
,
71
78
(
1989
).
40.
M. V.
Ioffe
and
H. J.
Korschb
, “
Nonlinear supersymmetric (Darboux) covariance of the Ermakov–Milne–Pinney equation
,”
Phys. Lett. A
311
,
200
205
(
2003
).
41.
E. S.
Kryachko
, “
Few sketches on connections between the Riccati and Ermakov–Milne–Pinney equations
,”
Int. J. Quantum Chem.
109
,
2897
2902
(
2009
).
42.
M.
Nowakowski
and
H. C.
Rosu
, “
Newton's laws of motion in form of Riccati equation
,”
Phys. Rev. E
65
,
047602
(
2002
).
43.
N. P.
Petrov
, “
The dynamical Casimir effect in a periodically changing domain: A dynamical systems approach
,”
J. Opt. B: Quantum Semiclassical Opt.
7
,
S89
(
2005
).
44.
G.
Pietrzkowski
, “
Explicit solutions of the
$\mathfrak {a}_1$
a1
-type Lie Scheffers system and a general Riccati equation
,”
J. Dyn. Control Syst.
18
,
551
571
(
2012
).
45.
P. G. L.
Leach
, “
Symmetry and singularity properties of the generalised Kummer–Schwarz and related equations
,”
J. Math. Anal. Appl.
348
,
487
493
(
2008
).
46.
J.
Grabowski
and
J.
de Lucas
, “
Mixed superposition rules and the Riccati hierarchy
,”
J. Differ. Equations
254
,
179
198
(
2013
).
47.
Z.
Nehari
, “
The Schwarzian derivative and Schlicht functions
,”
Bull. Am. Math. Soc.
55
,
545
551
(
1949
).
48.
J. F.
Cariñena
and
J.
de Lucas
, “
Superposition rules and second-order Riccati equations
,”
J. Geom. Mech.
3
,
1
22
(
2011
).
49.
R.
Abraham
and
J. E.
Marsden
,
Foundations of Mechanics
, 2nd ed. (
Addison–Wesley
,
1987
).
50.
D.
Blázquez-Sanz
and
J. J.
Morales-Ruiz
, “
Local and global aspects of Lie's superposition theorem
,”
J. Lie Theory
20
,
483
517
(
2010
).
51.
R. S.
Palais
,
A Global Formulation of the Lie Theory of Transformation Groups
,
Memoirs of the American Mathematical Society
Vol.
22
(
Providence
,
1957
).
52.
J. F.
Cariñena
and
J.
de Lucas
, “
Recent applications of the theory of Lie systems in Ermakov systems
,”
Symmetry, Integr. Geom.: Methods Appl.
4
,
031
(
2008
).
53.
K.
Itô
,
Encyclopedic Dictionary of Mathematics
, 2nd ed. (
MIT
,
1987
), Vols.
I–IV
.
54.
M.
Euler
,
N.
Euler
, and
P.
Leach
, “
The Riccati and Ermakov-Pinney hierarchies
,”
J. Nonlinear Math. Phys.
14
,
290
310
(
2007
).
55.
V.
Gritsev
,
P.
Barmettler
, and
E.
Demler
, “
Scaling approach to quantum non-equilibrium dynamics of many-body systems
,”
New J. Phys.
12
,
113005
(
2010
).
56.
P. G. L.
Leach
and
K. G.
Govinder
, “
On the uniqueness of the Schwarzian and linearisation by nonlocal contact transformation
,”
J. Math. Anal. Appl.
235
,
84
107
(
1999
).
57.
M. H.
Dida
,
F.
Hathout
, and
M.
Djaa
, “
On the geometry of the second order tangent bundle with the diagonal lift metric
,”
Int. J. Math. Anal.
3
,
443
456
(
2009
).
58.
C.
Rogers
and
W. K.
Schief
, “
Multi-component Ermakov systems: Structure and linearization
,”
J. Math. Anal. Appl.
198
,
194
220
(
1996
).
59.
M.
Delgado
, “
The Lagrange–Charpit method
,”
SIAM Rev.
39
,
298
304
(
1997
).
60.
V.
Ovsienko
and
S.
Tabachnikov
,
Projective Differential Geometry Old and New: From the Schwarzian Derivative to Cohomology of Diffeomorphism Groups
(
Cambridge University Press
,
2005
).
61.
P. J.
Olver
and
J.
Peter
,
Applications of Lie Groups to Differential Equations
,
Graduate Texts in Mathematics
Vol.
107
(
Springer-Verlag
,
1993
).
62.
M.
Boutin
, “
On invariants of Lie group actions and their application to some equivalence problems
,” Ph.D. dissertation (
University of Minnesota
, ProQuest LLC, Ann Arbor,
2001
).
You do not currently have access to this content.