We investigate the stability of quantum Markov processes with respect to perturbations of their transition maps. In the first part, we introduce a condition number that measures the sensitivity of fixed points of a quantum channel to perturbations. We establish upper and lower bounds on this condition number in terms of subdominant eigenvalues of the transition map. In the second part, we consider quantum Markov processes that converge to a unique stationary state and we analyze the stability of the evolution at finite times. In this way we obtain a linear relation between the mixing time of a quantum Markov process and the sensitivity of its fixed point with respect to perturbations of the transition map.

1.
R.
Bhatia
,
Matrix Analysis
(
Springer
,
1996
).
2.
E.
Cho
and
C.
Meyer
, “
Comparison of perturbations bounds for the stationary distributions of a Markov chain
,”
Linear Algebr. Appl.
335
(
1
),
137
150
(
2001
).
3.
S.
Diehl
,
A.
Micheli
,
A.
Kantian
,
B.
Kraus
,
H.
Büchler
, and
P.
Zoller
, “
Quantum states and phases in driven open quantum systems with cold atoms
,”
Nat. Phys.
4
,
878
883
(
2008
).
4.
M.
Kastoryano
and
K.
Temme
, “
Quantum logarithmic Sobolev inequalities and rapid mixing
,” preprint arXiv:1207.3261 (
2012
).
5.
B.
Kraus
,
H. P.
Büchler
,
S.
Diehl
,
A.
Kantian
,
A.
Micheli
, and
P.
Zoller
, “
Preparation of entangled states by quantum Markov processes
,”
Phys. Rev. A
78
,
042307
(
2008
).
6.
A.
Mitrophanov
, “
Stability and exponential convergence of continuous-time Markov chains
,”
J. Appl. Probab.
40
,
970
979
(
2003
).
7.
A.
Mitrophanov
, “
Sensitivity and convergence of uniformly ergodic Markov chains
,”
J. Appl. Probab.
42
,
1003
1014
(
2005
).
8.
N. K.
Nikolski
, “
Condition numbers of large matrices and analytic capacities
,”
St. Petersbg. Math. J.
17
,
641
682
(
2006
).
9.
R.
Phillips
, “
Perturbation theory for semi-groups of linear operators
,”
Trans. Am. Math. Soc.
74
,
199
221
(
1953
).
10.
D.
Reeb
,
M. J.
Kastoryano
, and
M. M.
Wolf
, “
Hilbert's projective metric in quantum information theory
,”
J. Math. Phys.
52
(
8
),
082201
(
2011
).
11.
M.
Ruskai
, “
Beyond strong subadditivity? Improved bounds on the contraction of generalized relative entropy
,”
Rev. Math. Phys.
6
,
1147
1161
(
1994
).
12.
P.
Schweitzer
, “
Perturbation theory and finite Markov chains
,”
J. Appl. Probab.
5
,
401
413
(
1968
).
13.
E.
Seneta
, “
Ergodicity coefficients and spectrum localization
,”
Linear Algebr. Appl.
60
,
187
197
(
1984
).
14.
E.
Seneta
, “
Perturbation of the stationary distribution measured by ergodicity coefficients
,”
Adv. Appl. Probab.
20
,
228
230
(
1988
).
15.
O.
Szehr
,
D.
Reeb
, and
M.
Wolf
, “
Spectral convergence bounds for classical and quantum Markov processes
,” preprint arXiv:1301.4827 (
2013
).
16.
K.
Temme
,
M. J.
Kastoryano
,
M. B.
Ruskai
,
M. M.
Wolf
, and
F.
Verstraete
, “
The chi[sup 2]-divergence and mixing times of quantum Markov processes
,”
J. Math. Phys.
51
(
12
),
122201
(
2010
).
17.
K.
Temme
,
T.
Osborne
,
K.
Vollbrecht
,
D.
Poulin
, and
F.
Verstraete
, “
Quantum metropolis sampling
,”
Nature (London)
471
,
87
90
(
2011
).
18.
F.
Versraete
,
M.
Wolf
, and
I.
Cirac
, “
Quantum computation and quantum-state engineering driven by dissipation
,”
Nat. Phys.
5
(
9
),
633
636
(
2009
).
19.
M.
Wolf
and
D.
Perez-Garcia
, “
The inverse eigenvalue problem for quantum channels
,” preprint arXiv:1005.4545 (
2010
).
20.
R.
Zarouf
, “
Une amélioration d'un résultat de E.B. Davies et B. Simon
,”
Comptes Rendus Mathematique
347
(
15
),
939
942
(
2009
);
You do not currently have access to this content.