We investigate the stability of quantum Markov processes with respect to perturbations of their transition maps. In the first part, we introduce a condition number that measures the sensitivity of fixed points of a quantum channel to perturbations. We establish upper and lower bounds on this condition number in terms of subdominant eigenvalues of the transition map. In the second part, we consider quantum Markov processes that converge to a unique stationary state and we analyze the stability of the evolution at finite times. In this way we obtain a linear relation between the mixing time of a quantum Markov process and the sensitivity of its fixed point with respect to perturbations of the transition map.
REFERENCES
1.
2.
E.
Cho
and C.
Meyer
, “Comparison of perturbations bounds for the stationary distributions of a Markov chain
,” Linear Algebr. Appl.
335
(1
), 137
–150
(2001
).3.
S.
Diehl
, A.
Micheli
, A.
Kantian
, B.
Kraus
, H.
Büchler
, and P.
Zoller
, “Quantum states and phases in driven open quantum systems with cold atoms
,” Nat. Phys.
4
, 878
–883
(2008
).4.
M.
Kastoryano
and K.
Temme
, “Quantum logarithmic Sobolev inequalities and rapid mixing
,” preprint arXiv:1207.3261 (2012
).5.
B.
Kraus
, H. P.
Büchler
, S.
Diehl
, A.
Kantian
, A.
Micheli
, and P.
Zoller
, “Preparation of entangled states by quantum Markov processes
,” Phys. Rev. A
78
, 042307
(2008
).6.
A.
Mitrophanov
, “Stability and exponential convergence of continuous-time Markov chains
,” J. Appl. Probab.
40
, 970
–979
(2003
).7.
A.
Mitrophanov
, “Sensitivity and convergence of uniformly ergodic Markov chains
,” J. Appl. Probab.
42
, 1003
–1014
(2005
).8.
N. K.
Nikolski
, “Condition numbers of large matrices and analytic capacities
,” St. Petersbg. Math. J.
17
, 641
–682
(2006
).9.
R.
Phillips
, “Perturbation theory for semi-groups of linear operators
,” Trans. Am. Math. Soc.
74
, 199
–221
(1953
).10.
D.
Reeb
, M. J.
Kastoryano
, and M. M.
Wolf
, “Hilbert's projective metric in quantum information theory
,” J. Math. Phys.
52
(8
), 082201
(2011
).11.
M.
Ruskai
, “Beyond strong subadditivity? Improved bounds on the contraction of generalized relative entropy
,” Rev. Math. Phys.
6
, 1147
–1161
(1994
).12.
P.
Schweitzer
, “Perturbation theory and finite Markov chains
,” J. Appl. Probab.
5
, 401
–413
(1968
).13.
E.
Seneta
, “Ergodicity coefficients and spectrum localization
,” Linear Algebr. Appl.
60
, 187
–197
(1984
).14.
E.
Seneta
, “Perturbation of the stationary distribution measured by ergodicity coefficients
,” Adv. Appl. Probab.
20
, 228
–230
(1988
).15.
O.
Szehr
, D.
Reeb
, and M.
Wolf
, “Spectral convergence bounds for classical and quantum Markov processes
,” preprint arXiv:1301.4827 (2013
).16.
K.
Temme
, M. J.
Kastoryano
, M. B.
Ruskai
, M. M.
Wolf
, and F.
Verstraete
, “The chi[sup 2]-divergence and mixing times of quantum Markov processes
,” J. Math. Phys.
51
(12
), 122201
(2010
).17.
K.
Temme
, T.
Osborne
, K.
Vollbrecht
, D.
Poulin
, and F.
Verstraete
, “Quantum metropolis sampling
,” Nature (London)
471
, 87
–90
(2011
).18.
F.
Versraete
, M.
Wolf
, and I.
Cirac
, “Quantum computation and quantum-state engineering driven by dissipation
,” Nat. Phys.
5
(9
), 633
–636
(2009
).19.
M.
Wolf
and D.
Perez-Garcia
, “The inverse eigenvalue problem for quantum channels
,” preprint arXiv:1005.4545 (2010
).20.
R.
Zarouf
, “Une amélioration d'un résultat de E.B. Davies et B. Simon
,” Comptes Rendus Mathematique
347
(15
), 939
–942
(2009
);e-print arXiv:0903.2743v2.
© 2013 American Institute of Physics.
2013
American Institute of Physics
You do not currently have access to this content.