We present a new method for constructing affine families of complex Hadamard matrices in every even dimension. This method has an intersection with Diţă’s construction and generalizes Szöllősi's method. We extend some known families and present new ones existing in even dimensions. In particular, we find more than 13 millon inequivalent affine families in dimension 32. We also find analytical restrictions for any set of four mutually unbiased bases existing in dimension six and for any family of complex Hadamard matrices existing in every odd dimension.

1.
R.
Werner
, “
All teleportation and dense coding schemes
,”
J. Phys. A
34
,
7081
7094
(
2001
).
2.
L.
Vaidman
,
Y.
Aharonov
, and
D. Z.
Albert
,
Phys. Rev. Lett.
58
,
1385
(
1987
).
3.
B.-G.
Englert
and
Y.
Aharonov
, “
The mean King's problem: Prime degrees of freedom
,”
Phys. Lett. A
284
,
1
5
(
2001
).
4.
A.
Klappenecker
and
M.
Rötteler
, “
New tales of the mean King
,” e-print arXiv:quant-ph/0502138 (
2005
).
5.
I.
Heng
and
C. H.
Cooke
, “
Error correcting codes associated with complex Hadamard matrices
,”
Appl. Math. Lett.
11
,
77
80
(
1998
).
6.
G.
Zauner
, Ph.D. dissertation,
University of Wien
,
1999
.
7.
T.
Tao
, “
Fuglede's conjecture is false in 5 and higher dimensions
,”
Math. Res. Lett.
11
,
251
258
(
2004
).
8.
M.
Matolcsi
, “
Fuglede's conjecture fails in dimension 4
,”
Proc. Am. Math. Soc.
133
,
3021
3026
(
2005
).
9.
M. N.
Kolountzakis
and
M.
Matolcsi
, “
Tiles with no spectra
,”
Forum Mathematicum
18
(
3
),
519
528
(
2006
).
10.
M. N.
Kolountzakis
and
M.
Matolcsi
, “
Complex Hadamard matrices and the spectral set conjecture
,” in the
Proceedings of the 7th International Conference on Harmonic Analysis and Partial Differential Equations
(
El Escorial
,
2004
).
11.
S.
Popa
, “
Orthogonal pairs of *-subalgebras in finite von Neumann algebras
,”
J. Oper. Theory
9
,
253
268
(
1983
).
12.
P.
de la Harpe
and
V. R. F.
Jones
, “
Paires de sous-algebres semi-simples et graphes fortement reguliers
,”
Acad. Sci., Paris, C. R.
311
,
147
150
(
1990
).
13.
A.
Munemasa
and
Y.
Watatani
, “
Orthogonal pairs of *-subalgebras and association schemes
,”
Acad. Sci., Paris, C. R.
314
,
329
331
(
1992
).
14.
U.
Haagerup
,
Ortogonal Maximal Abelian *-subalgebras of n × n Matrices and Cyclic n-roots
,
Operator Algebras and Quantum Field Theory
, edited by
S.
Doplicher
 et al. (
MA International
,
Cambridge
,
1997
), pp.
296
322
.
15.
G.
Björk
and
R.
Fröberg
, “
A faster way to count the solutions of inhomogeneous systems of algebraic equations, with applications to cyclic n-roots
,”
J. Symb. Comput.
12
,
329
336
(
1991
).
16.
G.
Björck
and
B.
Saffari
, “
New classes of finite unimodular sequences with unimodular Fourier transform. Circulant Hadamard matrices with complex entries
,”
Acad. Sci., Paris , C. R.
320
,
319
324
(
1995
).
17.
C. D.
Godsil
and
A.
Roy
, “
Equiangular lines, mutually unbiased bases, and spin models
,”
Eur. J. Combinatorics
30
(
1
),
246
262
(
2009
);
18.
W.
Wootters
and
B.
Fields
, “
Optimal state-determination by mutually unbiased measurements
,”
Ann. Phys.
191
,
363
381
(
1989
).
19.
K.
Horadam
,
Hadamard Matrices and Their Applications
(
Princeton University
,
2007
).
20.
W.
Tadej
and
K.
Życzkowski
, “
A concise guide to complex Hadamard matrices
,”
Open Syst. Inf. Dyn.
13
,
133
177
(
2006
).
21.
P.
Diţă
, “
Four-parameter families of complex Hadamard matrices of order six
,” e-print arXiv:1207.2593v1 [math-ph] (
2012
).
22.
W.
Tadej
and
K.
Życzkowski
, “
Defect of a unitary matrix
,”
Numer. Linear Algebra Appl.
429
,
447
481
(
2008
).
23.
M.
Matolcsi
,
J.
Réffy
, and
F.
Szöllősi
, “
Constructions of complex Hadamard matrices via tiling Abelian groups
,”
Open Syst. Inf. Dyn.
14
,
247
(
2007
).
24.
P.
Jaming
 et al., “
A generalized Pauli problem and an infinite family of MUB-triplets in dimension 6
,”
J. Phys. A: Math. Theor.
42
,
245305
(
2009
).
25.
P.
Diţă
, “
Complex Hadamard matrices from Sylvester inverse orthogonal matrices
,”
Open Sys. Inf. Dyn.
16
,
387
405
(
2009
);
see the following errata e-print arXiv:0901.0982v2.
26.
H.
Kharaghania
and
B.
Tayfeh-Rezaie
, “
Hadamard matrices of order 32
,”
J. Combinatorial Designs
(in press) (
2013
).
27.
See the BTZ catalog of complex Hadamard matrices http://chaos.if.uj.edu.pl/~karol/hadamard for finding the current status of the problem.
28.
D.
McNulty
and
S.
Weigert
, “
Isolated Hadamard matrices from mutually unbiased product bases
,”
J. Math. Phys.
53
(
12
),
122202
(
2012
);
e-print arXiv:1208.1057v1 [math-ph].
29.
F.
Szöllősi
, “
Parametrizing complex Hadamard matrices
,”
Eur. J. Comb.
29
,
1219
1234
(
2008
).
30.
P.
Diţă
, “
Some results on the parametrization of complex Hadamard matrices
,”
J. Phys. A
37
,
5355
(
2004
).
31.
J.
Sylvester
, “
Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tesselated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers
,”
London Edinburgh, Dublin Philos. Mag. J. Sci.
34
,
461
475
(
1867
).
32.
N.
Barros
and
I.
Bengtsson
, “
Families of complex Hadamard matrices
,”
Linear Algebra and its Applications
438
(
7
),
2929
2957
(
2013
);
e-print arXiv:1202.1181v1 [math-ph].
33.
P.
Diţă
, “
Hadamard matrices from mutually unbiased bases
,”
J. Math. Phys.
51
,
072202
(
2010
).
34.
P.
Diţă
, “
Circulant conference matrices for new complex Hadamard matrices
,” e-print arXiv:1107.1338v1 [math-ph] (
2011
).
You do not currently have access to this content.