We introduce a notion of Poisson bialgebra as an analogue of a Lie bialgebra of Drinfeld. Poisson bialgebras exhibit many familiar properties of Lie bialgebras. In particular, they can be constructed from a combination of the classical Yang-Baxter equation and the associative Yang-Baxter equation and there exists a natural Drinfeld classical double. Moreover, Poisson bialgebras are related to certain algebraic structures and they fit naturally into a framework to construct compatible Poisson brackets in integrable systems.
REFERENCES
1.
I.
Vaisman
, Lectures on the Geometry of Poisson Manifolds
, Progress in Mathematics
Vol. 118
(Birkhäuser Verlag
, Basel
, 1994
).2.
V. G.
Drinfeld
, “Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations
,” Sov. Math. Dokl.
27
, 68
–71
(1983
).3.
V.
Chari
and A.
Pressley
, A Guide to Quantum Groups
(Cambridge University Press
, Cambridge
, 1994
).4.
C.
Kassel
, Quantum Groups
, GTM
Vol. 155
(Springer-Verlag
, Berlin
, 1995
).5.
S. A.
Joni
and G. C.
Rota
, “Coalgebras and Bialgebras in Combinatorics
,” Stud. Appl. Math.
61
, 93
–139
(1979
);Reprinted in
Gian-Carto Rota on Combinatorics: Introductory Papers and Commentaries
, edited by J. P. S.
Kung
(Birkhäuser
, Boston
, 1995
).6.
V. N.
Zhelyabin
, “Jordan bialgebras and their connections with Lie bialgebras
,” Algebra Logic
36
, 1
–15
(1997
).7.
M.
Aguiar
, “On the associative analog of Lie bialgebras
,” J. Algebra
244
, 492
–532
(2001
).8.
C.
Bai
, “Double constructions of Frobenius algebras, Connes cocycles and their duality
,” J. Noncommu. Geom.
4
, 475
–530
(2010
).9.
M.
Aguiar
, Infinitesimal Hopf algebras in New Trends in Hopf Algebra Theory
, Contemporary Mathematics
, Vol. 267
(American Mathematical Society
, Providence, RI
, 2000
), pp. 1
–29
.10.
M.
Aguiar
, “Infinitesimal Hopf Algebras and the cd-index of Polytopes
,” Discrete Comput. Geom.
27
, 3
–28
(2002
).11.
E.
Ehrenborg
and M.
Readdy
, “Coproducts and the cd-index
,” J. Algebraic Combin.
8
, 273
–299
(1998
).12.
L.-C.
Li
, “Classical r-matrices and compatible Poisson structures for Lax equations on Poisson algebras
,” Commun. Math. Phys.
203
, 573
–592
(1999
).13.
M.
Bordemann
, “Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups
,” Commun. Math. Phys.
135
, 201
–216
(1990
).14.
B. A.
Kuperschmidt
, “What a classical r-matrix really is
,” J. Nonlinear Math. Phys.
6
, 448
–488
(1999
).15.
C.
Bai
, “A unified algebraic approach to the classical Yang-Baxter equation
,” J. Phys. A: Math. Theor.
40
, 11073
–11082
(2007
).16.
J.-L.
Loday
, “On the algebra of quasi-shuffles
,” Manuscr. Math.
123
, 79
–93
(2007
).17.
J.-L.
Loday
and M.
Ronco
, “Trialgebras and families of polytopes
,” in Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory
, Comteporary Mathematics
Vol. 346
(American Mathematical Society
, Providence, RI
, 2004
), pp. 369
–398
.18.
S.
Majid
, “Matched pairs of Lie groups associated to solutions of the Yang-Baxter equation
,” Pac. J. Math.
141
, 311
–332
(1990
).19.
M.
Takeuchi
, “Matched pairs of groups and bismash products of Hopf algebras
,” Commun. Algebra
9
, 841
–882
(1981
).20.
21.
M.
Aguiar
, “Infinitesimal bialgebras, pre-Lie and dendriform algebras
,” in Hopf algebras
, Lecture notes in Pure and Applied Mathematics
Vol. 237
(Marcel Dekker
, NY
, 2004
), pp. 1
–33
.22.
M. A.
Semonov-Tian-Shansky
, “What is a classical R-matrix?
,” Funct. Anal. Appl.
17
, 259
–272
(1983
).23.
A. W.
Knapp
, Lie Groups Beyond an Introduction
(Birkhäuser
, Berlin
, 1996
).24.,”
C.
Bai
, L.
Guo
, and X.
Ni
, “$\mathcal {O}$
-operators on associative algebras and associative Yang-Baxter equationsPac. J. Math.
256
, 257
–289
(2012
).25.
B.
Vallette
, “Homology of generalized partition posets
,” J. Pure Appl. Algebra
208
, 699
–725
(2007
).26.
M.
Aguiar
, “Pre-Poisson algebras
,” Lett. Math. Phys.
54
, 263
–277
(2000
).27.
C.
Bai
, L.
Guo
, and X.
Ni
, “Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras
,” Commun. Math. Phys.
297
, 553
–596
(2010
).28.
G.-C.
Rota
, “Baxter operators, an introduction
,” in Gian-Carlo Rota on Combinatorics: Introductory Papers and Commentaries
, edited by J. P. S.
Kung
(Birkhäuser
, Boston
, 1995
), pp. 504
–512
.29.
I.
Gelfand
and I.
Dorfman
, “Hamiltonian operators and algebraic structures related to them
,” Funct. Anal. Appl.
13
, 248
–262
(1979
).30.
F.
Magri
, “A simple model of the integrable Hamiltonian equation
,” J. Math. Phys.
19
, 1156
–1162
(1978
).31.
J.-L.
Loday
, Generalized Bialgebras and Triples of Operads
, Astérisque
Vol. 320
(Soc. Mathematique France
, Paris
, 2008
), x+116
pp.32.
C.
Klimčík
, “Poisson Lie T-duality
,” Nuclear Phys. B, Proc. Suppl.
46
, 116
–121
(1996
).33.
E. J.
Beggs
and S.
Majid
, “Poisson-Lie T-duality for quasitriangular Lie bialgebras
,” Commun. Math. Phys.
220
, 455
–488
(2001
).34.
P.
Etingof
and D.
Kazhdan
, “Quantization of Lie bialgebras, I
,” Selecta Math., New Ser.
2
, 1
–41
(1996
).© 2013 American Institute of Physics.
2013
American Institute of Physics
You do not currently have access to this content.