We introduce a notion of Poisson bialgebra as an analogue of a Lie bialgebra of Drinfeld. Poisson bialgebras exhibit many familiar properties of Lie bialgebras. In particular, they can be constructed from a combination of the classical Yang-Baxter equation and the associative Yang-Baxter equation and there exists a natural Drinfeld classical double. Moreover, Poisson bialgebras are related to certain algebraic structures and they fit naturally into a framework to construct compatible Poisson brackets in integrable systems.

1.
I.
Vaisman
,
Lectures on the Geometry of Poisson Manifolds
,
Progress in Mathematics
Vol.
118
(
Birkhäuser Verlag
,
Basel
,
1994
).
2.
V. G.
Drinfeld
, “
Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations
,”
Sov. Math. Dokl.
27
,
68
71
(
1983
).
3.
V.
Chari
and
A.
Pressley
,
A Guide to Quantum Groups
(
Cambridge University Press
,
Cambridge
,
1994
).
4.
C.
Kassel
,
Quantum Groups
,
GTM
Vol.
155
(
Springer-Verlag
,
Berlin
,
1995
).
5.
S. A.
Joni
and
G. C.
Rota
, “
Coalgebras and Bialgebras in Combinatorics
,”
Stud. Appl. Math.
61
,
93
139
(
1979
);
Reprinted in
Gian-Carto Rota on Combinatorics: Introductory Papers and Commentaries
, edited by
J. P. S.
Kung
(
Birkhäuser
,
Boston
,
1995
).
6.
V. N.
Zhelyabin
, “
Jordan bialgebras and their connections with Lie bialgebras
,”
Algebra Logic
36
,
1
15
(
1997
).
7.
M.
Aguiar
, “
On the associative analog of Lie bialgebras
,”
J. Algebra
244
,
492
532
(
2001
).
8.
C.
Bai
, “
Double constructions of Frobenius algebras, Connes cocycles and their duality
,”
J. Noncommu. Geom.
4
,
475
530
(
2010
).
9.
M.
Aguiar
, Infinitesimal Hopf algebras in
New Trends in Hopf Algebra Theory
,
Contemporary Mathematics
, Vol.
267
(
American Mathematical Society
,
Providence, RI
,
2000
), pp.
1
29
.
10.
M.
Aguiar
, “
Infinitesimal Hopf Algebras and the cd-index of Polytopes
,”
Discrete Comput. Geom.
27
,
3
28
(
2002
).
11.
E.
Ehrenborg
and
M.
Readdy
, “
Coproducts and the cd-index
,”
J. Algebraic Combin.
8
,
273
299
(
1998
).
12.
L.-C.
Li
, “
Classical r-matrices and compatible Poisson structures for Lax equations on Poisson algebras
,”
Commun. Math. Phys.
203
,
573
592
(
1999
).
13.
M.
Bordemann
, “
Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups
,”
Commun. Math. Phys.
135
,
201
216
(
1990
).
14.
B. A.
Kuperschmidt
, “
What a classical r-matrix really is
,”
J. Nonlinear Math. Phys.
6
,
448
488
(
1999
).
15.
C.
Bai
, “
A unified algebraic approach to the classical Yang-Baxter equation
,”
J. Phys. A: Math. Theor.
40
,
11073
11082
(
2007
).
16.
J.-L.
Loday
, “
On the algebra of quasi-shuffles
,”
Manuscr. Math.
123
,
79
93
(
2007
).
17.
J.-L.
Loday
and
M.
Ronco
, “
Trialgebras and families of polytopes
,” in
Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory
,
Comteporary Mathematics
Vol.
346
(
American Mathematical Society
,
Providence, RI
,
2004
), pp.
369
398
.
18.
S.
Majid
, “
Matched pairs of Lie groups associated to solutions of the Yang-Baxter equation
,”
Pac. J. Math.
141
,
311
332
(
1990
).
19.
M.
Takeuchi
, “
Matched pairs of groups and bismash products of Hopf algebras
,”
Commun. Algebra
9
,
841
882
(
1981
).
20.
R.
Schafer
,
An Introduction to Nonassociative Algebras
(
Dover
,
New York
,
1995
).
21.
M.
Aguiar
, “
Infinitesimal bialgebras, pre-Lie and dendriform algebras
,” in
Hopf algebras
,
Lecture notes in Pure and Applied Mathematics
Vol.
237
(
Marcel Dekker
,
NY
,
2004
), pp.
1
33
.
22.
M. A.
Semonov-Tian-Shansky
, “
What is a classical R-matrix?
,”
Funct. Anal. Appl.
17
,
259
272
(
1983
).
23.
A. W.
Knapp
,
Lie Groups Beyond an Introduction
(
Birkhäuser
,
Berlin
,
1996
).
24.
C.
Bai
,
L.
Guo
, and
X.
Ni
, “
$\mathcal {O}$
O
-operators on associative algebras and associative Yang-Baxter equations
,”
Pac. J. Math.
256
,
257
289
(
2012
).
25.
B.
Vallette
, “
Homology of generalized partition posets
,”
J. Pure Appl. Algebra
208
,
699
725
(
2007
).
26.
M.
Aguiar
, “
Pre-Poisson algebras
,”
Lett. Math. Phys.
54
,
263
277
(
2000
).
27.
C.
Bai
,
L.
Guo
, and
X.
Ni
, “
Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras
,”
Commun. Math. Phys.
297
,
553
596
(
2010
).
28.
G.-C.
Rota
, “
Baxter operators, an introduction
,” in
Gian-Carlo Rota on Combinatorics: Introductory Papers and Commentaries
, edited by
J. P. S.
Kung
(
Birkhäuser
,
Boston
,
1995
), pp.
504
512
.
29.
I.
Gelfand
and
I.
Dorfman
, “
Hamiltonian operators and algebraic structures related to them
,”
Funct. Anal. Appl.
13
,
248
262
(
1979
).
30.
F.
Magri
, “
A simple model of the integrable Hamiltonian equation
,”
J. Math. Phys.
19
,
1156
1162
(
1978
).
31.
J.-L.
Loday
,
Generalized Bialgebras and Triples of Operads
,
Astérisque
Vol.
320
(
Soc. Mathematique France
,
Paris
,
2008
),
x+116
pp.
32.
C.
Klimčík
, “
Poisson Lie T-duality
,”
Nuclear Phys. B, Proc. Suppl.
46
,
116
121
(
1996
).
33.
E. J.
Beggs
and
S.
Majid
, “
Poisson-Lie T-duality for quasitriangular Lie bialgebras
,”
Commun. Math. Phys.
220
,
455
488
(
2001
).
34.
P.
Etingof
and
D.
Kazhdan
, “
Quantization of Lie bialgebras, I
,”
Selecta Math., New Ser.
2
,
1
41
(
1996
).
You do not currently have access to this content.