Over the (1, N)-dimensional real superspace, N = 2, 3, we classify

$\mathfrak {osp}(N|2)$
osp(N|2)-invariant binary differential operators acting on the superspaces of weighted densities, where
$\mathfrak {osp}(N|2)$
osp(N|2)
is the orthosymplectic Lie superalgebra. This result allows us to compute the first differential
$\mathfrak {osp}(N|2)$
osp(N|2)
-relative cohomology of the Lie superalgebra
$\mathcal {K}(N)$
K(N)
of contact vector fields with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We classify generic formal
$\mathfrak {osp}(3|2)$
osp(3|2)
-trivial deformations of the
$\mathcal {K}(3)$
K(3)
-module structure on the superspaces of symbols of differential operators. We prove that any generic formal
$\mathfrak {osp}(3|2)$
osp(3|2)
-trivial deformation of this
$\mathcal {K}(3)$
K(3)
-module is equivalent to its infinitesimal part. This work is the simplest generalization of a result by the first author et al.[Basdouri, I., Ben Ammar, M., Ben Fraj, N., Boujelbene, M., and Kammoun, K., “Cohomology of the Lie superalgebra of contact vector fields on
$\mathbb {K}^{1|1}$
K1|1
and deformations of the superspace of symbols
,” J. Nonlinear Math. Phys.16, 373 (2009) https://doi.org/10.1142/S1402925109000431]
.

1.
Agrebaoui
,
B.
,
Ammar
,
F.
,
Lecomte
,
P.
, and
Ovsienko
,
V.
, “
Multi-parameter deformations of the module of symbols of differential operators
,”
Int. Math. Res. Notices
2002
,
847
869
.
2.
Agrebaoui
,
B.
,
Ben Fraj
,
N.
,
Ben Ammar
,
M.
, and
Ovsienko
,
V.
, “
Deformations of modules of differential forms
,”
J. Nonlinear Math. Phys.
10
,
148
156
(
2003
).
3.
Basdouri
,
I.
,
Ben Ammar
,
M.
,
Ben Fraj
,
N.
,
Boujelbene
,
M.
, and
Kammoun
,
K.
, “
Cohomology of the Lie superalgebra of contact vector fields on
$\mathbb {K}^{1|1}$
K1|1
and deformations of the superspace of symbols
,”
J. Nonlinear Math. Phys.
16
,
373
(
2009
).
4.
Basdouri
,
I.
,
Ben Ammar
,
M.
,
Dali
,
B.
, and
Omri
,
S.
, “
Deformation of
${\rm Vect_P}(\mathbb {R})$
Vect P(R)
-modules of symbols
,”
J. Geom. Phys.
60
(
3
),
531
542
(
2010
); e-print arXiv:math.RT/0702664.
5.
Ben Ammar
,
M.
and
Boujelbene
,
M.
, “
sl(2)-Trivial deformations of
${\rm Vect_P}(\mathbb {R})$
Vect P(R)
-modules of symbols
,”
Symmetry, Integr. Geom.: Methods Appl.
4
,
065
(
2008
).
6.
Ben Ammar
,
M.
,
Ben Fraj
,
N.
, and
Omri
,
S.
, “
The binary invariant differential operators on weighted densities on the superspace
$\mathbb {R}^{1|n}$
R1|n
and cohomology
,”
J. Math. Phys.
51
,
043504
(
2010
).
7.
Bouarroudj
,
S.
, “
On sl(2)-relative cohomology of the Lie algebra of vector fields and differential operators
,”
J. Nonlinear Math. Phys.
14
(
1
),
112
127
(
2007
).
8.
Bouarroudj
,
S.
and
Ovsienko
,
V.
, “
Three cocycles on Diff(S1) generalizing the Schwarzian derivative
,”
Int. Math. Res. Notices
1998
,
25
39
.
9.
Fialowski
,
A.
and
Fuchs
,
D. B.
, “
Construction of miniversal deformations of Lie algebras
,”
J. Funct. Anal.
161
,
76
110
(
1999
).
10.
Fuchs
,
D. B.
,
Cohomology of Infinite-Dimensional Lie Algebras
(
Plenum
,
New York
,
1986
).
11.
Gargoubi
,
H.
,
Mellouli
,
N.
, and
Ovsienko
,
V.
, “
Differential operators on supercircle: Conformally equivariant quantization and symbol calculus
,”
Lett. Math. Phys.
79
,
51
65
(
2007
).
12.
Gargoubi
,
H.
and
Ovsienko
,
V.
, “
Supertransvectants and symplectic geometry
,”
Int. Math. Res. Notes
2008
(
2008
); e-print arXiv:0705.1411v1 [math-ph].
13.
Gieres
,
F.
and
Theisen
,
S.
, “
Superconformally covariant operators and super W-algebras
,”
J. Math. Phys.
34
,
5964
5985
(
1993
).
14.
Gordan
,
P.
,
Invariantentheorie
(
Teubner
,
Leipzig
,
1887
).
15.
Grozman
,
P.
,
Leites
,
D.
, and
Shchepochkina
,
I.
, “
Invariant operators on supermanifolds and standard models
,” in
Multiple Facets of Quantization and Supersymmetry
, edited by
M.
Olshanetski
and
A.
Vainstein
(
World Scientific
,
2002
), pp.
508
555
.
16.
Grozman
,
P.
,
Leites
,
D.
, and
Shchepochkina
,
I.
, “
Lie superalgebras of string theories
,”
Acta Math. Vietnam.
26
(
1
),
27
63
(
2001
); e-print arXiv:hep-th/9702120.
17.
Leites
,
D.
, “
Introduction to the theory of supermanifolds
,”
Usp. Mat. Nauk
35
(
1
),
3
57
(
1980
);
Leites
,
D.
[
Russian Math. Surveys
35
(
1
),
1
64
(
1980
) (in Russian)].
18.
Nijenhuis
,
A.
and
Richardson
,
R. W.
, Jr.
, “
Deformations of homomorphisms of Lie groups and Lie algebras
,”
Bull. Am. Math. Soc.
73
,
175
179
(
1967
).
19.
Ovsienko
,
V.
and
Roger
,
C.
, “
Deforming the Lie algebra of vector fields on S1 inside the Lie algebra of pseudodifferential operators on S1(AMS Transl. Ser. 2)
,”
Adv. Math. Sci. Appl.
194
,
211
227
(
1999
).
20.
Ovsienko
,
V.
and
Roger
,
C.
, “
Deforming the Lie algebra of vector fields on S1 inside the Poisson algebra on
$\dot{T}^*S^1$
Ṫ*S1
,”
Commun. Math. Phys.
198
,
97
110
(
1998
).
21.
Richardson
,
R. W.
, “
Deformations of subalgebras of Lie algebras
,”
J. Diff. Geom.
3
,
289
308
(
1969
).
You do not currently have access to this content.