For a two-dimensional steady supersonic Euler flow past a convex cornered wall with right angle, a characteristic discontinuity (vortex sheet and/or entropy wave) is generated, which separates the supersonic flow from the quiescent gas (hence subsonic). We proved that such a transonic characteristic discontinuity is structurally stable under small perturbations of the upstream supersonic flow in BV. The existence of a weak entropy solution and Lipschitz continuous free boundary (i.e., characteristic discontinuity) is established. To achieve this, the problem is formulated as a free boundary problem for a nonstrictly hyperbolic system of conservation laws; and the free boundary problem is then solved by analyzing nonlinear wave interactions and employing the front tracking method.

1.
Bae
,
M.
, “
Stability of contact discontinuity for steady Euler system
,”
Z. Angew. Math. Phys.
(
2012
).
2.
Bressan
,
A.
,
Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem
(
Oxford University Press
,
Oxford
,
2000
).
3.
Chen
,
G.-Q.
,
Chen
,
J.
, and
Feldman
,
M.
, “
Transonic shocks and free boundary problems for the full Euler equations in infinite nozzles
,”
J. Math. Pures Appl.
88
(
2
),
191
218
(
2007
).
4.
Chen
,
G.-Q.
and
Kukreja
,
V.
, “
L1-stability of vortex sheets and entropy waves in steady compressible supersonic Euler flows over Lipschitz walls
,” preprint arXiv:1205.4429 (
2012
).
5.
Chen
,
G.-Q.
,
Kukreja
,
V.
, and
Yuan
,
H.
, “
Well-posedness of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows
,”
Z. Angew. Math. Phys.
(
2013
).
6.
Chen
,
G.-Q.
,
Zhang
,
Y.-Q.
, and
Zhu
,
D.-W.
, “
Stability of compressible vortex sheets in steady supersonic Euler flows over Lipschitz walls
,”
SIAM J. Math. Anal.
38
,
1660
1693
(
2007
).
7.
Chen
,
S.-X.
, “
Stability of a Mach configuration
,”
Commun. Pure Appl. Math.
59
,
1
35
(
2006
).
8.
Chen
,
S.-X.
and
Fang
,
B.
, “
Stability of reflection and refraction of shocks on interface
,”
J. Differ. Equations
244
(
8
),
1946
1984
(
2008
).
9.
Dafermos
,
C. M.
,
Hyperbolic Conservation Laws in Continuum Physics
, 3rd ed. (
Springer-Verlag
,
Berlin/Heidelberg
,
2010
).
10.
Fang
,
B.
,
Wang
,
Y.-G.
, and
Yuan
,
H.
, “
Reflection and refraction of shocks on an interface with a reflected rarefaction wave
,”
J. Math. Phys.
52
,
073702
(
2011
).
11.
Glimm
,
J.
, “
Solutions in the large for nonlinear hyperbolic systems of equations
,”
Commun. Pure Appl. Math.
18
,
697
715
(
1965
).
12.
Holden
,
H.
and
Risebro
,
N. H.
,
Front Tracking for Hyperbolic Conservation Laws
(
Springer-Verlag
,
New York
,
2002
).
13.
Liu
,
L.
and
Yuan
,
H.
, “
Stability of cylindrical transonic shocks for the two-dimensional steady compressible Euler system
,”
J. Hyperbolic Differ. Equ.
5
,
347
379
(
2008
).
14.
Xin
,
Z.
,
Yan
,
W.
, and
Yin
,
H.
, “
Transonic shock problem for the Euler system in a nozzle
,”
Arch. Ration. Mech. Anal.
194
,
1
47
(
2009
).
15.
Yuan
,
H.
, “
On transonic shocks in two-dimensional variable-area ducts for steady Euler system
,”
SIAM J. Math. Anal.
38
,
1343
1370
(
2006
).
16.
Zhang
,
Y.-Q.
, “
Steady supersonic flow over bending wall
,”
Nonlinear Anal.: Real World Appl.
12
,
167
189
(
2011
).
You do not currently have access to this content.