We prove a multidimensional version of the Yamada-Watanabe theorem, i.e., a theorem giving conditions on coefficients of a stochastic differential equation for existence and pathwise uniqueness of strong solutions. It implies an existence and uniqueness theorem for the eigenvalue and eigenvector processes of matrix-valued stochastic processes, called a “spectral” matrix Yamada-Watanabe theorem. The multidimensional Yamada-Watanabe theorem is also applied to particle systems of squared Bessel processes, corresponding to matrix analogues of squared Bessel processes, Wishart and Jacobi matrix processes. The β-versions of these particle systems are also considered.

1.
M. F.
Bru
, “
Diffusions of perturbed principal component analysis
,”
J. Multivariate Anal.
29
(
1
),
127
136
(
1989
).
2.
M. F.
Bru
, “
Processus de Wishart
,”
C. R. Acad. Sci. Paris Sér. I Math.
308
(
1
),
29
32
(
1989
).
3.
M. F.
Bru
, “
Wishart processes
,”
J. Theor. Probab.
4
,
725
751
(
1991
).
4.
E.
Cépa
and
D.
Lépingle
, “
Diffusing particles with electrostatic repulsion
,”
Probab. Theory Relat. Fields
107
(
4
),
429
449
(
1997
).
5.
N.
Demni
, “
The Laguerre process and generalized Hartman-Watson law
,”
Bernoulli
13
(
2
),
556
580
(
2007
).
6.
N.
Demni
, “
Radial Dunkl processes: Existence, uniqueness and hitting time
,”
C. R. Math. Acad. Sci. Paris
347
(
19–20
),
1125
1128
(
2009
).
7.
N.
Demni
, “
Note on radial Dunkl processes
,” e-print arXiv:0812.4269v3.
8.
N.
Demni
, “
β-Jacobi processes
,”
Adv. Pure Appl. Math.
1
(
3
),
325
344
(
2010
).
9.
C.
Donati-Martin
,
Y.
Doumerc
,
H.
Matsumoto
, and
M.
Yor
, “
Some properties of the Wishart processes and a matrix extension of the Hartman-Watson laws
,”
Publ. Res. Inst. Math. Sci.
40
(
4
),
1385
1412
(
2004
).
10.
Y.
Doumerc
, “
Matrices aléatoires, processus stochastiques et groupes de refléxions
,” Ph.D. dissertation (
Paul Sabatier University
, Toulouse,
2005
).
11.
P. J.
Forrester
,
Log-Gases and Random Matrices
,
London Mathematical Society Monographs Series
Vol.
34
(
Princeton University
,
Princeton, NJ
,
2010
).
12.
P.
Graczyk
and
L.
Vostrikova
, “
The moments of Wishart processes via Itô calculus
,”
Teor. Veroyatn. Ee Primen.
51
(
4
),
732
751
(
2006
);
P.
Graczyk
and
L.
Vostrikova
,
Theory Probab. Appl.
51
(
4
),
609
625
(
2007
) (translation).
13.
N.
Ikeda
and
S.
Watanabe
,
Stochastic Differential Equations and Diffusion Processes
,
North-Holland Mathematical Library
Vol.
24
(
North-Holland
,
Amsterdam
,
1981
).
14.
M.
Katori
and
H.
Tanemura
, “
Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems
,”
J. Math. Phys.
45
(
8
),
3058
3085
(
2004
).
15.
M.
Katori
and
H.
Tanemura
, “
Nonintersecting paths, noncolliding diffusion processes and representation theory
,”
RIMS Kokyuroku
1438
,
83
102
(
2005
).
16.
M.
Katori
and
H.
Tanemura
, “
Noncolliding processes, matrix-valued processes and determinantal processes
,”
Sugaku Expo.
24
(
2
),
263
289
(
2011
).
17.
M.
Katori
and
H.
Tanemura
, “
Noncolliding squared Bessel processes
,”
J. Stat. Phys.
142
,
592
615
(
2011
).
18.
W.
König
and
N.
O'Connell
, “
Eigenvalues of the Laguerre process as non-colliding squared Bessel processes
,”
Electron. Commun. Probab.
6
,
107
114
(
2001
).
19.
J.-F.
Le Gall
, “
Applications du temps local aux équations différentielles stochastiques unidimensionnelles
,”
Lecture Notes in Mathematics
Vol.
986
(Springer, Berlin,
1983
), pp.
15
31
.
20.
D.
Lépingle
, “
Boundary behavior of a constrained Brownian motion between reflecting-repellent walls
,”
Probab. Math. Stat.
30
(
2
),
273
287
(
2010
).
21.
H. P.
McKean
,
Stochastic Integrals
(
AMS Chelsea
,
Providence, RI
,
2005
) (reprint 1969 ed. with errata).
22.
E.
Mayerhofer
,
O.
Pfaffel
, and
R.
Stelzer
, “
On strong solutions for positive definite jump-diffusions
,”
Stochastic Proc. Appl.
121
(
9
),
2072
2086
(
2011
).
23.
R. J.
Muirhead
, “
Aspects of Multivariate Statistical Theory
,”
Wiley Series in Probability and Mathematical Statistics
(
Wiley
,
New York
,
1982
).
24.
J. R.
Norris
,
L. C. G.
Rogers
, and
D.
Williams
, “
Brownian motions of ellipsoids
,”
Trans. Am. Math. Soc.
294
(
2
),
757
765
(
1986
).
25.
D.
Revuz
and
M.
Yor
,
Continuous Martingales and Brownian Motion
(
Springer
,
New York
,
1999
).
26.
L. C. G.
Rogers
and
Z.
Shi
, “
Interacting Brownian particles and the Wigner law
,”
Probab. Theory Relat. Fields
95
(
4
),
555
570
(
1993
).
27.
B.
Schapira
, “
The Heckman–Opdam Markov processes
,”
Prob. Theory Relat. Fields
138
,
495
519
(
2007
).
28.
Y.
Yamada
and
S.
Watanabe
, “
On the uniqueness of solutions of stochastic differential equations
,”
J. Math. Kyoto Univ.
11
,
155
167
(
1971
).
You do not currently have access to this content.