We prove a multidimensional version of the Yamada-Watanabe theorem, i.e., a theorem giving conditions on coefficients of a stochastic differential equation for existence and pathwise uniqueness of strong solutions. It implies an existence and uniqueness theorem for the eigenvalue and eigenvector processes of matrix-valued stochastic processes, called a “spectral” matrix Yamada-Watanabe theorem. The multidimensional Yamada-Watanabe theorem is also applied to particle systems of squared Bessel processes, corresponding to matrix analogues of squared Bessel processes, Wishart and Jacobi matrix processes. The β-versions of these particle systems are also considered.
REFERENCES
1.
M. F.
Bru
, “Diffusions of perturbed principal component analysis
,” J. Multivariate Anal.
29
(1
), 127
–136
(1989
).2.
M. F.
Bru
, “Processus de Wishart
,” C. R. Acad. Sci. Paris Sér. I Math.
308
(1
), 29
–32
(1989
).3.
M. F.
Bru
, “Wishart processes
,” J. Theor. Probab.
4
, 725
–751
(1991
).4.
E.
Cépa
and D.
Lépingle
, “Diffusing particles with electrostatic repulsion
,” Probab. Theory Relat. Fields
107
(4
), 429
–449
(1997
).5.
N.
Demni
, “The Laguerre process and generalized Hartman-Watson law
,” Bernoulli
13
(2
), 556
–580
(2007
).6.
N.
Demni
, “Radial Dunkl processes: Existence, uniqueness and hitting time
,” C. R. Math. Acad. Sci. Paris
347
(19–20
), 1125
–1128
(2009
).7.
8.
N.
Demni
, “β-Jacobi processes
,” Adv. Pure Appl. Math.
1
(3
), 325
–344
(2010
).9.
C.
Donati-Martin
, Y.
Doumerc
, H.
Matsumoto
, and M.
Yor
, “Some properties of the Wishart processes and a matrix extension of the Hartman-Watson laws
,” Publ. Res. Inst. Math. Sci.
40
(4
), 1385
–1412
(2004
).10.
Y.
Doumerc
, “Matrices aléatoires, processus stochastiques et groupes de refléxions
,” Ph.D. dissertation (Paul Sabatier University
, Toulouse, 2005
).11.
P. J.
Forrester
, Log-Gases and Random Matrices
, London Mathematical Society Monographs Series
Vol. 34
(Princeton University
, Princeton, NJ
, 2010
).12.
P.
Graczyk
and L.
Vostrikova
, “The moments of Wishart processes via Itô calculus
,” Teor. Veroyatn. Ee Primen.
51
(4
), 732
–751
(2006
);P.
Graczyk
and L.
Vostrikova
, Theory Probab. Appl.
51
(4
), 609
–625
(2007
) (translation).13.
N.
Ikeda
and S.
Watanabe
, Stochastic Differential Equations and Diffusion Processes
, North-Holland Mathematical Library
Vol. 24
(North-Holland
, Amsterdam
, 1981
).14.
M.
Katori
and H.
Tanemura
, “Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems
,” J. Math. Phys.
45
(8
), 3058
–3085
(2004
).15.
M.
Katori
and H.
Tanemura
, “Nonintersecting paths, noncolliding diffusion processes and representation theory
,” RIMS Kokyuroku
1438
, 83
–102
(2005
).16.
M.
Katori
and H.
Tanemura
, “Noncolliding processes, matrix-valued processes and determinantal processes
,” Sugaku Expo.
24
(2
), 263
–289
(2011
).17.
M.
Katori
and H.
Tanemura
, “Noncolliding squared Bessel processes
,” J. Stat. Phys.
142
, 592
–615
(2011
).18.
W.
König
and N.
O'Connell
, “Eigenvalues of the Laguerre process as non-colliding squared Bessel processes
,” Electron. Commun. Probab.
6
, 107
–114
(2001
).19.
J.-F.
Le Gall
, “Applications du temps local aux équations différentielles stochastiques unidimensionnelles
,” Lecture Notes in Mathematics
Vol. 986
(Springer, Berlin, 1983
), pp. 15
–31
.20.
D.
Lépingle
, “Boundary behavior of a constrained Brownian motion between reflecting-repellent walls
,” Probab. Math. Stat.
30
(2
), 273
–287
(2010
).21.
H. P.
McKean
, Stochastic Integrals
(AMS Chelsea
, Providence, RI
, 2005
) (reprint 1969 ed. with errata).22.
E.
Mayerhofer
, O.
Pfaffel
, and R.
Stelzer
, “On strong solutions for positive definite jump-diffusions
,” Stochastic Proc. Appl.
121
(9
), 2072
–2086
(2011
).23.
R. J.
Muirhead
, “Aspects of Multivariate Statistical Theory
,” Wiley Series in Probability and Mathematical Statistics
(Wiley
, New York
, 1982
).24.
J. R.
Norris
, L. C. G.
Rogers
, and D.
Williams
, “Brownian motions of ellipsoids
,” Trans. Am. Math. Soc.
294
(2
), 757
–765
(1986
).25.
D.
Revuz
and M.
Yor
, Continuous Martingales and Brownian Motion
(Springer
, New York
, 1999
).26.
L. C. G.
Rogers
and Z.
Shi
, “Interacting Brownian particles and the Wigner law
,” Probab. Theory Relat. Fields
95
(4
), 555
–570
(1993
).27.
B.
Schapira
, “The Heckman–Opdam Markov processes
,” Prob. Theory Relat. Fields
138
, 495
–519
(2007
).28.
Y.
Yamada
and S.
Watanabe
, “On the uniqueness of solutions of stochastic differential equations
,” J. Math. Kyoto Univ.
11
, 155
–167
(1971
).© 2013 American Institute of Physics.
2013
American Institute of Physics
You do not currently have access to this content.