In a previous paper, we have shown that the geometry of double field theory has a natural interpretation on flat para-Kähler manifolds. In this paper, we show that the same geometric constructions can be made on any para-Hermitian manifold. The field is interpreted as a compatible (pseudo-)Riemannian metric. The tangent bundle of the manifold has a natural, metric-compatible bracket that extends the C-bracket of double field theory. In the para-Kähler case, this bracket is equal to the sum of the Courant brackets of the two Lagrangian foliations of the manifold. Then, we define a canonical connection and an action of the field that correspond to similar objects of double field theory. Another section is devoted to the Marsden-Weinstein reduction in double field theory on para-Hermitian manifolds. Finally, we give examples of fields on some well-known para-Hermitian manifolds.

1.
D. V.
Alekseevsky
,
C.
Medori
, and
A.
Tomasini
, “
Homogeneous para-Kähler Einstein manifolds
,”
Russ. Math. Surveys
64
(
1
),
1
43
(
2009
).
2.
T.
Courant
, “
Dirac manifolds
,”
Trans. Am. Math. Soc.
319
,
631
661
(
1990
).
3.
M. J.
Duff
, “
Duality rotations in string theory
,”
Nucl. Phys. B
335
,
610
620
(
1990
).
4.
F.
Etayo
,
R.
Santamaría
, and
U. R.
Trías
, “
The geometry of a bi-Lagrangian manifold
,”
Diff. Geom. Applic.
24
,
33
59
(
2006
).
5.
F.
Fassò
and
N.
Sansonetto
, “
Integrable almost-symplectic Hamiltonian systems
,”
J. Math. Phys.
48
,
092902
(
2007
).
6.
P. M.
Gadea
and
A. M.
Amilibia
, “
The paracomplex projective spaces as symmetric and natural spaces
,”
Indian J. Pure Appl. Math.
23
,
261
275
(
1992
).
7.
M.
Gualtieri
, “
Generalized complex geometry
,” Ph.D. thesis,
University of Oxford
,
2003
.
8.
M.
Gualtieri
, “
Branes on Poisson varieties
,”
The Many Facets of Geometry: A Tribute to Nigel Hitchin
, edited by
O.
Garcia-Prada
,
J. P.
Bourguignon
, and
S.
Salamon
(
Oxford University Press
,
Oxford
,
2010
), pp.
368
395
.
9.
N. J.
Hitchin
,
A.
Karlhede
,
U.
Lindström
, and
M.
Rocěk
, “
Hyperkahler metrics and supersymmetry
,”
Commun. Math. Phys.
108
,
535
589
(
1987
).
10.
O.
Hohm
,
C.
Hull
, and
B.
Zwiebach
, “
Generalized metric formulation of double field theory
,”
J. High Energy Phys.
1008
,
008
(
2010
).
11.
O.
Hohm
and
B.
Zwiebach
, “
Towards an invariant geometry of double field theory
,”
J. Math. Phys.
54
,
032303
(
2013
).
12.
O.
Hohm
,
D.
Lust
, and
B.
Zwiebach
, “
The spacetime of double field theory: Review, remarks, and outlook
,” e-print arXiv:1309.2977.
13.
S.
Kobayashi
and
K.
Nomizu
,
Foundations of Differential Geometry
(
Interscience
,
New York
,
1963
, 1969), Vols.
I
, II.
14.
J. J.
Konderak
, “
A symplectic reduction for pseudo-Riemannian manifolds with compatible almost product structures
,”
Beitr. Algebra Geom.
45
,
465
479
(
2004
).
15.
P.
Libermann
, “
Sur le problème d'équivalence de certaines structures infinitésimales
,”
Ann. Mat. Pura Appl.
36
(
4
),
27
120
(
1954
).
16.
P.
Libermann
and
Ch.-M.
Marle
,
Symplectic Geometry and Analytical Mechanics
(
D. Reidel Publishing Company
,
Dordrecht, Holland
,
1987
).
17.
Z.-J.
Liu
,
A.
Weinstein
, and
P.
Xu
, “
Manin triples for Lie bialgebroids
,”
J. Diff. Geom.
45
,
547
574
(
1997
).
18.
P.
Molino
,
Riemannian Foliations
,
Progress in Mathematics
Vol.
73
(
Birkhäuser
,
Boston
,
1988
).
19.
J. P.
Ortega
and
T. S.
Ratiu
,
Momentum Maps and Hamiltonian Reduction
,
Progress in Mathematics
Vol.
222
(
Birkhäuser
,
Boston
,
2004
).
20.
K.
Uchino
, “
Remarks on the definition of a Courant algebroid
,”
Lett. Math. Phys.
60
,
171
175
(
2002
).
21.
I.
Vaisman
, “
Variétés Riemaniennes Feuilletées
,”
Czech. Math. J.
21
,
46
75
(
1971
).
22.
I.
Vaisman
, “
A construction of Courant algebroids on foliated manifolds
,”
Bull. Math. Soc. Sci. Math. Roumanie
53
(
101
),
2
177
(
2010
).
23.
I.
Vaisman
, “
Dirac structures on generalized Riemannian manifolds
,”
Rev. Roum. Math. Pures Appl.
17
(
2
),
179
203
(
2012
).
24.
I.
Vaisman
, “
On the geometry of double field theory
,”
J. Math. Phys.
53
,
033509
(
2012
).
25.
I.
Vaisman
, “
Hamiltonian vector fields on almost symplectic manifolds
,”
J. Math. Phys.
54
,
092902
(
2013
).
You do not currently have access to this content.