The existence of time-periodic stochastic motions of an incompressible fluid is obtained. Here the fluid is subject to a time-periodic body force and an additional time-periodic stochastic force that is produced by a rigid body moves periodically stochastically with the same period in the fluid.

1.
R. A.
Adams
,
Sobolev Spaces
(
Academic Press
,
New York
,
1975
).
2.
A. Ya.
Dorogovtsev
, “
Some remarks on differential equations perturbed by periodic random processes
,”
Ukrain. Mat. Zh.
14
,
119
128
(
1962
)
A. Ya.
Dorogovtsev
, [
Transl. Math. Stat. Probab.
5
,
259
269
(
1965
)].
3.
A. Ya.
Dorogovtsev
, “
Periodic and Stationary Modes of Infinite-Dimensional Deterministic and Stochastic Dynamical Systems [in Russian]
” (Vyshcha Shkola, Kiev,
1992
).
4.
G. P.
Galdi
, “
On the motion of a rigid body in a viscous fluid: A mathematical analysis with applications
,” in
Handbook of Mathematical Fluid Dynamics
, edited by
S.
Friedlander
and
D.
Serre
(
North-Holland
,
Amsterdam
,
2002
), pp.
653
791
.
5.
G. P.
Galdi
and
A. L.
Silvestre
, “
Existence of time-periodic solutions to the Navier-Stokes equations around a moving body
,”
Pacific J. Math.
223
,
251
267
(
2006
).
6.
G. P.
Galdi
and
H.
Sohr
, “
Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body
,”
Arch. Ration. Mech. Anal.
172
,
363
406
(
2004
).
7.
J. G.
Heywood
, “
The Navier-Stokes equations: on the existence, regularity and decay of solutions
,”
Indiana Univ. Math. J.
29
,
639
681
(
1980
).
8.
H. L.
Hurd
and
A. G.
Miamee
,
Periodically Correlated Random Sequences. Spectral Theory and Practice
,
Wiley Series in Probability and Statistics
(
Wiley-Interscience
,
Hoboken, NJ
,
2007
).
9.
R.
Khasminskii
,
Stochastic Stability of Differential Equations. With contributions by G. N. Milstein and M. B. Nevelson
,
Stochastic Modelling and Applied Probability, 66
(
Springer
,
Heidelberg
,
2012
).
10.
H.
Kozono
,
M.
Nako
, “
Periodic solutions of the Navier-Stokes equations in unbounded domains
,”
Tohoku Math. J.
48
,
33
50
(
1996
).
11.
P.
Maremonti
, “
Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space
,”
Nonlinearity
4
,
503
529
(
1991
).
12.
P.
Maremonti
, “
Some theorems of existence for solutions of the Navier-Stokes equations with slip boundary conditions in half-space
,”
Ricerche Mat.
40
,
81
135
(
1991
).
13.
J. C.
Mattingly
, “
The stochastic Navier-Stokes equation: Energy estimates and phase space contraction
,” Ph.D. thesis (
Princeton University
,
1998
).
14.
H.
Morimoto
, “
On existence of periodic weak solutions to the Navier-Stokes equations in regions with periodically moving boundaries
,”
J. Fac. Sci. Univ. Tokyo Sect. IA Math.
18
,
499
524
(
1971
).
15.
G.
Prouse
, “
Soluzioni periodiche dell'equazione di Navier-Stokes
,”
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat.
35
,
443
447
(
1963
).
16.
R.
Salvi
, “
On the existence of periodic weak solutions on the Navier-Stokes equations in exterior regions with periodically moving boundaries
,” in
Navier-Stokes Equations and Related Nonlinear Problems
, edited by
A.
Sequeira
(
Plenum
,
New York
,
1995
), pp.
63
73
.
17.
A. L.
Silvestre
, “
On the existence of steady flows of a Navier-Stokes liquid around a moving rigid body
,”
Math. Methods Appl. Sci.
27
,
1399
1409
(
2004
).
18.
R. L.
Stratonovich
, Topics in the theory of random noise. Vol. I: General theory of random processes. Nonlinear transformations of signals and noise, revised English edition. Translated from the Russian by Richard A. (Silverman Gordon and Breach Science Publishers, New York-London
1963
).
19.
R.
Temam
,
Navier-Stokes Equations: Studies in Mathematics and its Applications
(
North-Holland
,
Amsterdam
,
1984
), Vol.
2
.
20.
M.
Yamazaki
, “
The Navier-Stokes equations in the weak Ln space with time-dependent external force
,”
Math. Ann.
317
,
635
675
(
2000
).
You do not currently have access to this content.