In this article, we treat G2-geometry as a special case of multisymplectic geometry and make a number of remarks regarding Hamiltonian multivector fields and Hamiltonian differential forms on manifolds with an integrable G2-structure; in particular, we discuss existence and make a number of identifications of the spaces of Hamiltonian structures associated to the two multisymplectic structures associated to an integrable G2-structure. Along the way, we prove some results in multisymplectic geometry that are generalizations of results from symplectic geometry.
REFERENCES
1.
Akbulut
, S.
, Efe
, B.
, and Salur
, S.
, “Mirror duality in a Joyce manifold
,” Adv. Math.
223
, 444
–453
(2010
).2.
Akbulut
, S.
and Salur
, S.
, “Mirror duality via G2 and Spin(7) manifolds
,” in Arithmetic and Geometry Around Quantization
, Progress in Mathematics
Vol. 279
(Birkhäuser Boston Inc.
, Boston, MA
, 2010
), pp. 1
–21
.3.
Arikan
, M. F.
, Cho
, H.
, and Salur
, S.
, “Existence of compatible contact structures on G2-manifolds
,” Asian J. Math.
17
(2
), 321
–333
(2013
).4.
Arikan
, M. F.
, Cho
, H.
, and Salur
, S.
, “Contact structures on G2-manifolds and spin 7-manifolds
,” preprint arXiv:1207.2046 (2012
).5.
Arnol'd
, V.
, Mathematical Methods of Classical Mechanics
(Springer
, 1989
), Vol. 60
.6.
Atiyah
, M.
and Witten
, E.
, “M-theory dynamics on a manifold of G2 holonomy
,” Adv. Theor. Math. Phys.
6
, 1
–106
(2002
).7.
Baez
, J.
, Hoffnung
, A.
, and Rogers
, C.
, “Categorified symplectic geometry and the classical string
,” Commun. Math. Phys.
293
, 701
–725
(2010
).8.
Baez
, J.
and Rogers
, C.
, “Categorified symplectic geometry and the string Lie 2-algebra
,” Homology, Homotopy Appl.
12
, 221
–236
(2010
).9.
Brown
, R.
and Gray
, A.
, “Vector cross products
,” Comment. Math. Helv.
42
, 222
–236
(1967
).10.
Bryant
, R.
, “Metrics with exceptional holonomy
,” Ann. Math.
126
(2
), 525
–576
(1987
).11.
Bryant
, R.
, “Some remarks on G2-structures
,” in Proceedings of Gökova Geometry-Topology Conference 2005
(Gökova Geometry/Topology Conference (GGT)
, Gökova
, 2006
), pp. 75
–109
.12.
Bryant
, R.
and Salamon
, S.
, “On the construction of some complete metrics with exceptional holonomy
,” Duke Math. J.
58
, 829
–850
(1989
).13.
Cabrera
, F.
, Monar
, M.
, and Swann
, A.
, “Classification of G2-structures
,” J. London Math. Soc.
53
(2
), 407
–416
(1996
).14.
Cantrijn
, F.
, Ibort
, A.
, and de León
, M.
, “Hamiltonian structures on multisymplectic manifolds
,” Rend. Sem. Mat. Univ. Politec. Torino
54
, 225
–236
(1996
).15.
Cantrijn
, F.
, Ibort
, A.
, and de León
, M.
, “On the geometry of multisymplectic manifolds
,” J. Austral. Math. Soc. Ser. A
66
, 303
–330
(1999
).16.
Carathéodory
, C.
, “Über die Variationsrechnung bei mehrfachen Integralen
,” Acta Szeged
4
, 193
–216
(1929
).17.
Cariñena
, J. F.
, Crampin
, M.
, and Ibort
, A.
, “On the multisymplectic formalism for first order field theories
,” Differential Geom. Appl.
1
, 345
–374
(1991
).18.
Cho
, H.
, Salur
, S.
, and Todd
, A. J.
, “A note on closed G2-structures and 3-manifolds
,” preprint arXiv:1112.0830 (2011
).19.
Cleyton
, R.
and Ivanov
, S.
, “On the geometry of closed G2-structures
,” Commun. Math. Phys.
270
, 53
–67
(2007
).20.
De Donder
, T.
, “Theorie invariantive du calcul des variations
,” Ann. Math
36
, 607
(1935
).21.
Echeverría-Enríquez
, A.
, Munoz-Lecanda
, M. C.
, and Román-Roy
, N.
, “Multivector field formulation of Hamiltonian field theories: Equations and symmetries
,” J. Phys. A
32
, 8461
(1999
).22.
Echeverria-Enriquez
, A.
, Munoz-Lecanda
, M. C.
, and Roman-Roy
, N.
, “Geometry of multisymplectic Hamiltonian first order field theories
,” J. Math. Phys.
41
, 7402
(2000
).23.
Fernández
, M.
, “An example of a compact calibrated manifold associated with the exceptional Lie group G2
,” J. Diff. Geom.
26
, 367
–370
(1987
).24.
Fernández
, M.
, “A family of compact solvable G2-calibrated manifolds
,” Tohoku Math. J.
39
(2
), 287
–289
(1987
).25.
Fernández
, M.
and Gray
, A.
, “Riemannian manifolds with structure group G2
,” Ann. Mat. Pura Appl. (4)
132
, 19
–45
(1983
).26.
Fernández
, M.
and Iglesias
, T.
, “New examples of Riemannian manifolds with structure group G2
,” Rend. Circ. Mat. Palermo (2)
35
, 276
–290
(1986
).27.
Forger
, M.
, Paufler
, C.
, and Römer
, H.
, “The Poisson bracket for Poisson forms in multisymplectic field theory
,” Rev. Math. Phys.
15
, 705
–743
(2003
).28.
Forger
, M.
, Paufler
, C.
, and Römer
, H.
, “Hamiltonian multivector fields and Poisson forms in multisymplectic field theory
,” J. Math. Phys.
46
, 112903
, (2005
).29.
Forger
, M.
and Römer
, H.
, “A Poisson bracket on multisymplectic phase space
,” Rep. Math. Phys.
48
, 211
–218
(2001
).30.
Gopakumar
, R.
and Vafa
, C.
, “M-theory and topological strings – II
,” preprint arXiv:hep-th/9812127 (1998
).31.
Gotay
, M. J.
, Isenberg
, J.
, and Marsden
, J. E.
, “Momentum maps and classical relativistic fields; 1, covariant field theory
” (1998
).32.
Gray
, A.
, “Vector cross products on manifolds
,” Trans. Am. Math. Soc.
141
, 465
–504
(1969
).33.
Gukov
, S.
, Yau
, S.-T.
, and Zaslow
, E.
, “Duality and fibrations on G2-manifolds
,” Turkish J. Math.
27
, 61
–97
(2003
).34.
Harvey
, R.
and Lawson
Jr., H. B.
, “Calibrated geometries
,” Acta Math.
148
, 47
–157
(1982
).35.
Hélein
, F.
, Multisymplectic Formalism and the Covariant Phase Space
, London Mathematical Society Lecture Note Series
Vol. 394
(2011
), pp. 94
–126
.36.
Hélein
, F.
and Kouneiher
, J.
, “Finite dimensional Hamiltonian formalism for gauge and quantum field theories
,” J. Math. Phys.
43
, 2306
(2002
).37.
Hélein
, F.
and Kouneiher
, J.
, “Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl
,” Adv. Theor. Math. Phys.
8
, 565
–601
(2004
).38.
Hélein
, F.
and Kouneiher
, J.
, “The notion of observable in the covariant Hamiltonian formalism for the calculus of variations with several variables
,” Adv. Theor. Math. Phys.
8
, 735
–777
(2004
).39.
Ibort
, A.
, “Multisymplectic geometry: Generic and exceptional
,” in Proceedings of the IX Fall Workshop on Geometry and Physics (Vilanova i la Geltrú, 2000)
, Publ. R. Soc. Mat. Esp.
Vol. 3
(R. Soc. Mat. Esp.
, Madrid
, 2001
), pp. 79
–88
.40.
Joyce
, D.
, Compact Manifolds with Special Holonomy
, Oxford Mathematical Monographs
(Oxford University Press
, Oxford
, 2000
), pp. xii+436
.41.
Joyce
, D.
, Riemannian Holonomy Groups and Calibrated Geometry
, Oxford Graduate Texts in Mathematics
Vol. 12
(Oxford University Press
, Oxford
, 2007
), pp. x+303
.42.
Karigiannis
, S.
, “Deformations of G2- and Spin(7)-structures
,” Can. J. Math.
57
, 1012
–1055
(2005
).43.
Leung
, N. C.
, “Topological quantum field theory for Calabi-Yau threefolds and G2-manifolds
,” Adv. Theor. Math. Phys.
6
, 575
–591
(2002
).44.
Madsen
, T.
and Swann
, A.
, “Homogeneous spaces, multi-moment maps and (2, 3)-trivial algebras
,” AIP Conf. Proc.
1360
, 51
(2011
).45.
Madsen
, T.
and Swann
, A.
, “Multi-moment maps
,” Adv. Math.
229
, 2287
–2309
(2012
).46.
Madsen
, T.
and Swann
, A.
, “Closed forms and multi-moment maps
,” Geom. Dedic.
165
, 25
–52
(2013
).47.
Marle
, C.-M.
, “The Schouten-Nijenhuis bracket and interior products
,” J. Geom. Phys.
23
, 350
–359
(1997
).48.
Marsden
, J.
and Shkoller
, S.
, “Multisymplectic geometry, covariant Hamiltonians, and water waves
,” in Mathematical Proceedings of the Cambridge Philosophical Society
(Cambridge Univ Press
, 1999
), Vol. 125
, pp. 553
–575
.49.
McDuff
, D.
and Salamon
, D.
, Introduction to Symplectic Topology
, 2nd ed., Oxford Mathematical Monographs (The Clarendon Press Oxford University Press
, New York
, 1998
), pp. x+486
.50.
Michor
, P.
, “Remarks on the Schouten-Nijenhuis bracket
,” in Proceedings of the Winter School on Geometry and Physics (Srní, 1987)
(Rend. Circ. Mat. Palermo (2) Suppl.
, 1987
), Vol. 16
, pp. 207
–215
.51.
Paufler
, C.
and Römer
, H.
, “Geometry of Hamiltonian n-vector fields in multisymplectic field theory
,” J. Geom. Phys.
44
, 52
–69
(2002
).52.
Pelling
, S.
and Rogers
, A.
, “Multisymplectic BRST
,” Int. J. Geom. Methods Mod. Phys.
10
, 1360012
(2013
).53.
Román-Roy
, N.
, “Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories
,” SIGMA
5
, 100
(2009
).54.
Salamon
, S.
, Riemannian Geometry and Holonomy Groups
, Pitman Research Notes in Mathematics Series
Vol. 201
(Longman Scientific & Technical
, Harlow
, 1989
), pp. viii+201
.55.
Salur
, S.
and Santillan
, O.
, “Mirror symmetry aspects for compact G2-manifolds
,” preprint arXiv:0707.1356 (2007
).56.
Salur
, S.
and Santillan
, O.
, “New Spin(7) holonomy metrics admitting G2 holonomy reductions and M-theory/type-IIA dualities
,” Phys. Rev. D
79
, 086009
(2009
).57.
Cannas da Silva
, A.
, Lectures on Symplectic Geometry
, Lecture Notes in Mathematics
Vol. 1764
(Springer-Verlag
, Berlin
, 2001
), pp. xii+217
.58.
Vaisman
, I.
, Lectures on the Geometry of Poisson Manifolds
, Progress in Mathematics
Vol. 118
(Birkhäuser Verlag
, Basel
, 1994
), pp. viii+205
.59.
Vankerschaver
, J.
, Yoshimura
, H.
, and Leok
, M.
, “On the geometry of multi-Dirac structures and Gerstenhaber algebras
,” J. Geom. Phys.
61
, 1415
–1425
(2011
).60.
61.
Weyl
, H.
, “Geodesic fields in the calculus of variation for multiple integrals
,” Ann. Math.
36
, 607
–629
(1935
).62.
Xu
, P.
, “Gerstenhaber algebras and BV-algebras in Poisson geometry
,” Commun. Math. Phys.
200
, 545
–560
(1999
).© 2013 AIP Publishing LLC.
2013
AIP Publishing LLC
You do not currently have access to this content.