The Rényi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in information theory and beyond. Various generalizations of Rényi entropies to the quantum setting have been proposed, most prominently Petz's quasi-entropies and Renner's conditional min-, max-, and collision entropy. However, these quantum extensions are incompatible and thus unsatisfactory. We propose a new quantum generalization of the family of Rényi entropies that contains the von Neumann entropy, min-entropy, collision entropy, and the max-entropy as special cases, thus encompassing most quantum entropies in use today. We show several natural properties for this definition, including data-processing inequalities, a duality relation, and an entropic uncertainty relation.

1.
H.
Araki
, “
On an inequality of Lieb and Thirring
,”
Lett. Math. Phys.
19
(
2
),
167
170
(
1990
).
2.
S.
Arimoto
, “
Information measures and capacity of order alpha for discrete memoryless channels
,” in
Topics in Information Theory
,
ser. Colloq. Math. Soc. J. Bolyai
16
,
I.
Csiszar
and
P.
Elias
, Eds.,
Amsterdam, North Holland
,
1977
, pp.
41
52
.
3.
K. M. R.
Audenaert
,
M.
Mosonyi
, and
F.
Verstraete
, “
Quantum state discrimination bounds for finite sample size
,”
J. Math. Phys.
53
(
12
),
122205
(
2012
).
4.
S.
Beigi
, “
Sandwiched Rényi divergence satisfies data processing inequality
,”
J. Math. Phys.
54
,
122202
(
2013
).
5.
M.
Berta
,
M.
Christandl
,
R.
Colbeck
,
J. M.
Renes
, and
R.
Renner
, “
The uncertainty principle in the presence of quantum memory
,”
Nat. Phys.
6
(
9
),
659
662
(
2010
).
6.
R.
Bhatia
,
Matrix Analysis
,
Graduate Texts in Mathematics
Vol.
169
(
Springer
,
1997
).
7.
P. J.
Coles
,
R.
Colbeck
,
L.
Yu
, and
M.
Zwolak
, “
Uncertainty relations from simple entropic properties
,”
Phys. Rev. Lett.
108
(
21
),
210405
(
2012
).
8.
I.
Csiszar
, “
Generalized cutoff rates and Renyi's information measures
,”
IEEE Trans. Inf. Theory
41
(
1
),
26
34
(
1995
).
9.
N.
Datta
, “
Min- and max-relative entropies and a new entanglement monotone
,”
IEEE Trans. Inf. Theory
55
(
6
),
2816
2826
(
2009
).
10.
N.
Datta
and
F.
Leditzky
, “
A limit of the quantum Rényi divergence
,” e-print arXiv:1308.5961.
11.
F.
Dupuis
,
O.
Fawzi
, and
S.
Wehner
, “
Entanglement sampling and applications
,” e-print arXiv:1305.1316.
12.
R. L.
Frank
and
E. H.
Lieb
, “
Monotonicity of a relative Rényi entropy
,”
J. Math. Phys.
54
,
122201
(
2013
).
13.
F.
Hiai
,
M.
Mosonyi
, and
T.
Ogawa
, “
Error exponents in hypothesis testing for correlated states on a spin chain
,”
J. Math. Phys.
49
,
032112
(
2008
); e-print arXiv:0707.2020.
14.
O.
Klein
, “
Zur Quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre
,”
Z. Phys.
72
(
11–12
),
767
775
(
1931
).
15.
R.
König
,
R.
Renner
, and
C.
Schaffner
, “
The operational meaning of min- and max-entropy
,”
IEEE Trans. Inf. Theory
55
(
9
),
4337
4347
(
2009
).
16.
R.
König
and
S.
Wehner
, “
A strong converse for classical channel coding using entangled inputs
,”
Phys. Rev. Lett.
103
(
7
),
070504
(
2009
).
17.
E.
Lieb
and
E.
Thirring
,
Studies in Mathematical Physics
(
Princeton University Press
,
1976
), pp.
269
297
.
18.
E. H.
Lieb
and
M. B.
Ruskai
, “
Proof of the strong subadditivity of quantum-mechanical entropy
,”
J. Math. Phys.
14
(
12
),
1938
(
1973
).
19.
G.
Lindblad
, “
Expectations and entropy inequalities for finite quantum systems
,”
Commun. Math. Phys.
39
,
111
119
(
1974
).
20.
G.
Lindblad
, “
Completely positive maps and entropy inequalities
,”
Commun. Math. Phys.
40
,
147
151
(
1975
).
21.
H.
Maassen
and
J.
Uffink
, “
Generalized entropic uncertainty relations
,”
Phys. Rev. Lett.
60
(
12
),
1103
1106
(
1988
).
22.
M.
Mosonyi
and
N.
Datta
, “
Generalized relative entropies and the capacity of classical-quantum channels
,”
J. Math. Phys.
50
,
072104
(
2009
).
23.
M.
Mosonyi
and
F.
Hiai
, “
On the quantum Renyi relative entropies and related capacity formulas
,”
IEEE Trans. Inf. Theory
57
,
2474
2487
(
2011
).
24.
M.
Mosonyi
and
T.
Ogawa
, “
Quantum hypothesis testing and the operational interpretation of the quantum Renyi relative entropies
,” e-print arXiv:1309.3228.
25.
M.
Müller-Lennert
, “
Quantum relative Rényi entropies
,” Master thesis,
ETH Zurich
,
2013
.
26.
M.
Müller-Lennert
,
F.
Dupuis
,
O.
Szehr
,
S.
Fehr
, and
M.
Tomamichel
, “
On quantum Rényi entropies: A new definition, some properties and several conjectures
,” e-print arXiv:1306.3142v1.
27.
T.
Ogawa
and
H.
Nagaoka
, “
Strong converse and Stein's lemma in quantum hypothesis testing
,”
IEEE Trans. Inf. Theory
46
(
7
),
2428
2433
(
2000
).
28.
T.
Ogawa
and
M.
Hayashi
, “
On error exponents in quantum hypothesis testing
,”
IEEE Trans. Inf. Theory
50
(
6
),
1368
1372
(
2004
).
29.
R.
Olkiewicz
and
B.
Zegarlinski
, “
Hypercontractivity in noncommutative Lp spaces
,”
J. Funct. Anal.
161
(
1
),
246
285
(
1999
).
30.
D.
Petz
, “
Quasi-entropies for finite quantum systems
,”
Rep. Math. Phys.
23
,
57
65
(
1986
).
31.
R.
Renner
, “
Security of quantum key distribution
,” Ph.D. thesis,
ETH Zurich
,
2005
.
32.
A.
Rényi
, “
On measures of information and entropy
,” in
Proceedings of the Symposium on Mathematical Statistics and Probability
(
University of California Press
,
Berkeley
,
1961
), pp.
547
561
.
33.
M.-B.
Ruskai
, “
Inequalities for quantum entropy: A review with conditions for equality
,”
J. Math. Phys.
43
(
9
),
4358
(
2002
).
34.
C.
Shannon
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
379
423
(
1948
).
35.
M.
Sion
, “
On general minimax theorems
,”
Pac. J. Math.
8
,
171
176
(
1958
).
36.
W. F.
Stinespring
, “
Positive functions on C*-algebras
,”
Proc. Am. Math. Soc.
6
,
211
216
(
1955
).
37.
M.
Tomamichel
, “
A framework for non-asymptotic quantum information theory
,” Ph.D. thesis,
ETH Zurich
,
2012
.
38.
M.
Tomamichel
, “
Focus Tutorial: Smooth min/max-entropies
,” QCrypt 2012, Slides available online at http://2012.qcrypt.net/program.html.
39.
M.
Tomamichel
,
R.
Colbeck
, and
R.
Renner
, “
A fully quantum asymptotic equipartition property
,”
IEEE Trans. Inf. Theory
55
(
12
),
5840
5847
(
2009
).
40.
M.
Tomamichel
and
R.
Renner
, “
Uncertainty relation for smooth entropies
,”
Phys. Rev. Lett.
106
(
11
),
110506
(
2011
).
41.
A.
Uhlmann
, “
Endlich Dimensionale Dichtematrizen, II
,”
Wiss. Z.-Karl-Marx-Univ. Leipzig, Math.-Naturwiss. Reihe
22
, Jg. H. 2,
139
(
1973
).
42.
A.
Uhlmann
, “
Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory
,”
Commun. Math. Phys.
54
,
21
32
(
1977
).
43.
M. M.
Wilde
,
A.
Winter
, and
D.
Yang
, “
Strong converse for the classical capacity of entanglement-breaking channels
,” e-print arXiv:1306.1586.
44.
M. M.
Wolf
,
Quantum Channels & Operations: Guided Tour
(
2012
).
45.
In contrast, the mean
$H(\rho \oplus \sigma ) = \protect \qopname{}{m}{max}\protect \lbrace H(\rho ), H(\sigma ) \protect \rbrace$
H(ρσ)=max{H(ρ),H(σ)}
would lead to a quantity that is not continuous.
46.
A function f(X, Y) is jointly convex if, for any λ ∈ [0, 1] and normalized X1, X2, Y1, Y2 ⩾ 0, we have fX1 + (1 − λ)X2, λY1 + (1 − λ)Y2) ⩽ λf(X1, Y1) + (1 − λ)f(X2, Y2).
You do not currently have access to this content.