Two novel polynomial su(1, 1) algebras for the physical systems with the first and second Pöschl-Teller (PT) potentials are constructed, and their specific representations are presented. Meanwhile, these polynomial su(1, 1) algebras are used as an algebraic technique to solve eigenvalues and eigenfunctions of the Hamiltonians associated with the first and second PT potentials. The algebraic approach explores an appropriate new pair of raising and lowing operators

$\hat{K}_\pm$
K̂± of polynomial su(1, 1) algebra as a pair of shift operators of our Hamiltonians. In addition, two usual su(1, 1) algebras associated with the first and second PT potentials are derived naturally from the polynomial su(1, 1) algebras built by us.

1.
S. P.
Smith
,
Trans. Am. Math. Soc.
322
,
285
(
1990
).
2.
A. S.
Zhedanov
,
Mod. Phys. Lett. A
07
,
507
(
1992
).
3.
J.
Beckers
,
Y.
Brihaye
, and
N.
Debergh
,
J. Phys. A
32
,
2791
(
1999
).
5.
V. P.
Karassiov
and
A.
Klimov
,
Phys. Lett. A
191
,
117
(
1994
).
6.
V. P.
Karassiov
,
J. Phys. A
27
,
153
(
1994
).
7.
V. P.
Karassiov
,
A. A.
Gusev
, and
S. I.
Vinitsky
,
Phys. Lett. A
295
,
247
(
2002
).
9.
M.
Sadiq
,
A.
Inomata
, and
G.
Junker
,
J. Phys. A
40
,
11105
(
2007
).
10.
C.
Delbecq
and
C.
Quesne
,
J. Phys. A
26
,
L127
(
1993
).
11.
Ya. I.
Granovskii
,
I. M.
Lutzenko
, and
A. S.
Zhedanov
,
Ann. Phys.
217
,
1
(
1992
).
12.
V. S.
Kumar
,
B. A.
Bambah
, and
R.
Jagannathan
,
J. Phys. A
34
,
8583
(
2001
);
V. S.
Kumar
,
B. A.
Bambah
, and
R.
Jagannathan
,
Mod. Phys. Lett. A
17
,
1559
(
2002
).
14.
15.
E. K.
Sklyanin
,
Funct. Anal. Appl.
16
,
263
(
1982
).
16.
J. M.
Leinaas
and
J.
Myrheim
,
Int. J. Mod. Phys. A
08
,
3649
(
1993
).
17.
R.
Floreanini
,
L.
Lapointe
, and
L.
Vinet
,
Phys. Lett. B
389
,
327
(
1996
).
19.
V. V.
Gritsev
and
A.
Kurochkin
,
Phys. Rev. B
64
,
035308
(
2001
).
20.
V.
Sunilkumar
,
B. A.
Bambah
,
R.
Jagannathan
,
P. K.
Panigrahi
, and
V.
Srinivasan
,
J. Opt. B: Quantum Semiclassical Opt.
2
,
126
(
2000
).
21.
Y. H.
Lee
,
W. L.
Yang
, and
Y. Z.
Zhang
,
J. Phys. A: Math. Theor.
43
,
375211
(
2010
);
Y. H.
Lee
,
W. L.
Yang
, and
Y. Z.
Zhang
,
J. Phys. A: Math. Theor.
43
,
185204
(
2010
).
22.
C.
Song
,
F. L.
Zhang
, and
J. L.
Chen
,
Commun. Theor. Phys.
54
,
412
(
2010
).
23.
A.
Ballesteros
,
O.
Civitarese
,
F. J.
Herranz
, and
M.
Reboiro
,
Theor. Math. Phys.
137
,
1495
(
2003
).
24.
J. L.
Chen
,
Y.
Liu
, and
M. L.
Ge
,
J. Phys. A
31
,
6473
(
1998
).
26.
A. M.
Perelomov
,
Commun. Math. Phys.
26
,
222
(
1972
).
28.
D.
Bonatsos
,
C.
Daskaloyannis
, and
P.
Kolokotronis
,
J. Phys. A
26
,
L871
(
1993
).
29.
M.
Sadiq
,
A.
Inomata
, and
G.
Junker
,
J. Phys. A
42
,
365210
(
2009
).
30.
G.
Pöschl
and
E.
Teller
,
Z. Phys.
83
,
143
(
1933
).
31.
M. M.
Nieto
,
Phys. Rev. A
17
,
1273
(
1978
).
32.
A. O.
Barut
,
A.
Inomata
, and
R.
Wilson
,
J. Phys. A
20
,
4075
(
1987
).
33.
N. N.
Lebedev
, in
Special Functions and Their Application
, translated by R. A. Silverman (
Dover Publication, Inc.
,
New York
,
1972
), Chap. 5.
34.
A. F.
Nikiforov
and
V. B.
Uvarov
,
Special Functions of Mathematical Physics
(
Birkhausr
,
Berlin
,
1988
).
You do not currently have access to this content.