The current paper is concerned with constructing multibump solutions for a class of quasilinear Schrödinger equations with critical growth. This extends the classical results of Coti Zelati and Rabinowitz [Commun. Pure Appl. Math. 45, 1217–1269 (1992)] for semilinear equations as well as recent work of Liu, Wang, and Guo [J. Funct. Anal. 262, 4040–4102 (2012)] for quasilinear problems with subcritical growth. The periodicity of the potentials is used to glue ground state solutions to construct multibump bound state solutions.
REFERENCES
1.
N.
Ackermann
, “A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations
,” J. Funct. Anal.
234
, 277
–320
(2006
).2.
A.
Ambrosetti
and Z.-Q.
Wang
, “Positive solutions to a class of quasilinear elliptic equations on R
,” Discrete Contin. Dyn. Syst.
9
, 55
–68
(2003
).3.
D.
Arcoya
and L.
Boccardo
, “Critical points for multiple integrals of the calculus of variations
,” Arch. Ration. Mech. Anal.
134
, 249
–274
(1996
).4.
G.
Arioli
, A.
Szulkin
, and W.
Zou
, “Multibump solutions and critical groups
,” Trans. Am. Math. Soc.
361
, 3159
–3187
(2009
).5.
A. V.
Borovskii
and A. L.
Galkin
, “Dynamical modulation of an ultrashort high-intensity laser pulse in matter
,” JETP
77
, 562
–573
(1993
).6.
Y.
Brihaye
and B.
Hartmann
, “Solitons on nanotubes and fullerenes as solutions of a modified nonlinear Schrödinger equation
,” Advances in Soliton Research
(Nova Science Publishers
, Hauppauge, NY
, 2006
), pp. 135
–151
.7.
L.
Brizhik
, A.
Eremko
, B.
Piette
, and W. J.
Zakrzewski
, “Electron self-trapping in a discrete two-dimensional lattice
,” Physica D
159
, 71
–90
(2001
).8.
L.
Brizhik
, A.
Eremko
, B.
Piette
, and W. J.
Zakrzewski
, “Static solutions of a D-dimensional modified nonlinear Schrödinger equation
,” Nonlinearity
16
, 1481
–1497
(2003
).9.
L.
Brüll
and H.
Lange
, “Solitary waves for quasilinear Schrödinger equations
,” Exposition Math.
4
, 279
–288
(1986
).10.
A.
Canino
and M.
Degiovanni
, “Nonsmooth critical point theory and quasilinear elliptic equations
,” in Topological Methods in Differential Equations and Inclusions
, Montreal, PQ
, 1994 [NATO Adv. Study Inst. Ser., Ser. C
472
, 1
–50
(1995
)].11.
K. C.
Chang
and J. Q.
Liu
, “A remark on homoclinic orbits for Hamiltonian systems
,” Nonlinear Analysis and Microlocal Analysis
, edited by K. C.
Chang
, Y. M.
Huang
, and T. T.
Li
, Nankai Series in Pure, Applied Math. and Theoretic Physics
Vol. 2
(World Scientific
, 1992
), pp. 130
–141
.12.
M.
Colin
and L.
Jeanjean
, “Solutions for a quasilinear Schrödinger equation: a dual approach
,” Nonlinear Anal.
56
, 213
–226
(2004
).13.
J.-N.
Corvellec
, “Morse theory for continuous functionals
,” J. Math. Anal. Appl.
196
, 1050
–1072
(1995
).14.
J.-N.
Corvellec
, M.
Degiovanni
, and M.
Marzocchi
, “Deformation properties for continuous functionals and critical point theory
,” Topol. Methods Nonlinear Anal.
1
, 151
–171
(1993
).15.
V.
Coti Zelati
, I.
Ekeland
, and E.
Séré
, “A variational approach to homoclinic orbits in Hamiltonian systems
,” Math. Ann.
288
, 133
–160
(1990
).16.
V.
Coti Zelati
and P. H.
Rabinowitz
, “Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials
,” J. Am. Math. Soc.
4
, 693
–727
(1991
).17.
V.
Coti Zelati
and P. H.
Rabinowitz
, “Homoclinic type solutions for a semilinear elliptic PDE on RN
,” Commun. Pure Appl. Math.
45
, 1217
–1269
(1992
).18.
A.
de Bouard
, N.
Hayashi
, and J. C.
Saut
, “Global existence of small solutions to a relativistic nonlinear Schrödinger equation
,” Commun. Math. Phys.
189
, 73
–105
(1997
).19.
M.
Degiovanni
and M.
Marzocchi
, “A critical point theory for nonsmooth functionals
,” Ann. Mat. Pura Appl.
167
, 73
–100
(1994
).20.
B.
Hartmann
and W. J.
Zakrzewski
, “Electrons on hexagonal lattices and applications to nanotubes
,” Phys. Rev. B
68
, 184302
(2003
).21.
A.
Ioffe
and E.
Schwartzman
, “Metric critical point theory 1. Morse regularity and homotopic stability of a minimum
,” J. Math. Pures Appl.
75
, 125
–153
(1996
).22.
G.
Katriel
, “Mountain pass theorems and global homeomorphism theorems
,” Ann. Inst. Henri Poincare, Anal. Non Lineaire
11
, 189
–209
(1994
).23.
C. E.
Kenig
, G.
Ponce
, and L.
Vega
, “The Cauchy problem for quasilinear Schrödinger equations
,” Invent. Math.
158
, 343
–388
(2004
).24.
A. M.
Kosevich
, B.
Ivanov
, and A. S.
Kovalev
, “Magnetic solitons
,” Phys. Rep.
194
, 117
–238
(1990
).25.
S.
Kurihara
, “Large-amplitude quasi-solitons in superfluid films
,” J. Phys. Soc. Jpn.
50
, 3262
–3267
(1981
).26.
H.
Lange
, M.
Poppenperg
, and H.
Teismann
, “Nash-Moser methods for the solutions of quasilinear Schrödinger equations
,” Commun. Partial Differ. Equ.
24
, 1399
–1418
(1999
).27.
L. L.
Lions
, “The concentration-compactness principle in the calculus of variations. The locally compact case. Part I and II
,” Ann. Inst. Henri Poincare, Anal. Non Lineaire
1
, 109
–145
and
–223
(1984
).28.
J.
Liu
and Y.
Guo
, “Critical point theory for nonsmooth functionals
,” Nonlinear Anal.
66
, 2731
–2741
(2007
).29.
J.
Liu
, Y.
Wang
, and Z.-Q.
Wang
, “Soliton solutions for quasilinear Schrödinger equations, II
,” J. Differ. Equations
187
, 473
–493
(2003
).30.
J.
Liu
, Y.
Wang
, and Z.-Q.
Wang
, “Solutions for quasilinear Schrödinger equations via the Nehari method
,” Commun. Partial Differ. Equ.
29
, 879
–901
(2004
).31.
J.
Liu
and Z.-Q.
Wang
, “Soliton solutions for quasilinear Schrödinger equations I
,” Proc. Am. Math. Soc.
131
, 441
–448
(2003
).32.
J.
Liu
, Z.-Q.
Wang
, and Y.
Guo
, “Multibump solutions for quasilinear elliptic equations
,” J. Funct. Anal.
262
, 4040
–4102
(2012
).33.
X.
Liu
, J.
Liu
, and Z.-Q.
Wang
, “Ground states for quasilinear Schrödinger equations with critical growth
,” Calculus Var. Partial Differ. Equ.
46
, 641
–669
(2013
).34.
Z.
Liu
and Z.-Q.
Wang
, “Multi-bump type nodal solutions having a prescribed number of nodal domains, I and II
,” Ann. Inst. Henri Poincare, Anal. Non Lineaire
22
, 597
–608
and
–609
(2005
).35.
M.
Poppenberg
, K.
Schmitt
, and Z.-Q.
Wang
, “On the existence of solutions to quasilinear Schrödinger equations
,” Calculus Var. Partial Differ. Equ.
14
, 329
–344
(2002
).36.
P. H.
Rabinowitz
, “A variational approach to multibump solutions of differential equations
,” Contemp. Math.
198
, 31
–43
(1996
).37.
P. H.
Rabinowitz
, “Multibump solutions of differential equations: an overview
,” Chin. J. Math.
24
, 1
–36
(1996
).38.
B.
Ritchie
, “Relativistic self-focusing and channel formation in laser-plasma interactions
,” Phys. Rev. E
50
, R687
–R689
(1994
).39.
E.
Séré
, “Existence of infinitely many homoclinic orbits in Hamiltonian systems
,” Math. Z.
209
, 27
–42
(1992
).40.
E.
Séré
, “Looking for Bernoulli shift
,” Ann. Inst. Henri Poincare, Anal. Non Lineaire
209
, 561
–590
(1993
).© 2013 AIP Publishing LLC.
2013
AIP Publishing LLC
You do not currently have access to this content.