The current paper is concerned with constructing multibump solutions for a class of quasilinear Schrödinger equations with critical growth. This extends the classical results of Coti Zelati and Rabinowitz [Commun. Pure Appl. Math.45, 12171269 (1992)] for semilinear equations as well as recent work of Liu, Wang, and Guo [J. Funct. Anal.262, 40404102 (2012)] for quasilinear problems with subcritical growth. The periodicity of the potentials is used to glue ground state solutions to construct multibump bound state solutions.

1.
N.
Ackermann
, “
A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations
,”
J. Funct. Anal.
234
,
277
320
(
2006
).
2.
A.
Ambrosetti
and
Z.-Q.
Wang
, “
Positive solutions to a class of quasilinear elliptic equations on R
,”
Discrete Contin. Dyn. Syst.
9
,
55
68
(
2003
).
3.
D.
Arcoya
and
L.
Boccardo
, “
Critical points for multiple integrals of the calculus of variations
,”
Arch. Ration. Mech. Anal.
134
,
249
274
(
1996
).
4.
G.
Arioli
,
A.
Szulkin
, and
W.
Zou
, “
Multibump solutions and critical groups
,”
Trans. Am. Math. Soc.
361
,
3159
3187
(
2009
).
5.
A. V.
Borovskii
and
A. L.
Galkin
, “
Dynamical modulation of an ultrashort high-intensity laser pulse in matter
,”
JETP
77
,
562
573
(
1993
).
6.
Y.
Brihaye
and
B.
Hartmann
, “
Solitons on nanotubes and fullerenes as solutions of a modified nonlinear Schrödinger equation
,”
Advances in Soliton Research
(
Nova Science Publishers
,
Hauppauge, NY
,
2006
), pp.
135
151
.
7.
L.
Brizhik
,
A.
Eremko
,
B.
Piette
, and
W. J.
Zakrzewski
, “
Electron self-trapping in a discrete two-dimensional lattice
,”
Physica D
159
,
71
90
(
2001
).
8.
L.
Brizhik
,
A.
Eremko
,
B.
Piette
, and
W. J.
Zakrzewski
, “
Static solutions of a D-dimensional modified nonlinear Schrödinger equation
,”
Nonlinearity
16
,
1481
1497
(
2003
).
9.
L.
Brüll
and
H.
Lange
, “
Solitary waves for quasilinear Schrödinger equations
,”
Exposition Math.
4
,
279
288
(
1986
).
10.
A.
Canino
and
M.
Degiovanni
, “
Nonsmooth critical point theory and quasilinear elliptic equations
,” in
Topological Methods in Differential Equations and Inclusions
,
Montreal, PQ
, 1994 [
NATO Adv. Study Inst. Ser., Ser. C
472
,
1
50
(
1995
)].
11.
K. C.
Chang
and
J. Q.
Liu
, “
A remark on homoclinic orbits for Hamiltonian systems
,”
Nonlinear Analysis and Microlocal Analysis
, edited by
K. C.
Chang
,
Y. M.
Huang
, and
T. T.
Li
,
Nankai Series in Pure, Applied Math. and Theoretic Physics
Vol.
2
(
World Scientific
,
1992
), pp.
130
141
.
12.
M.
Colin
and
L.
Jeanjean
, “
Solutions for a quasilinear Schrödinger equation: a dual approach
,”
Nonlinear Anal.
56
,
213
226
(
2004
).
13.
J.-N.
Corvellec
, “
Morse theory for continuous functionals
,”
J. Math. Anal. Appl.
196
,
1050
1072
(
1995
).
14.
J.-N.
Corvellec
,
M.
Degiovanni
, and
M.
Marzocchi
, “
Deformation properties for continuous functionals and critical point theory
,”
Topol. Methods Nonlinear Anal.
1
,
151
171
(
1993
).
15.
V.
Coti Zelati
,
I.
Ekeland
, and
E.
Séré
, “
A variational approach to homoclinic orbits in Hamiltonian systems
,”
Math. Ann.
288
,
133
160
(
1990
).
16.
V.
Coti Zelati
and
P. H.
Rabinowitz
, “
Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials
,”
J. Am. Math. Soc.
4
,
693
727
(
1991
).
17.
V.
Coti Zelati
and
P. H.
Rabinowitz
, “
Homoclinic type solutions for a semilinear elliptic PDE on RN
,”
Commun. Pure Appl. Math.
45
,
1217
1269
(
1992
).
18.
A.
de Bouard
,
N.
Hayashi
, and
J. C.
Saut
, “
Global existence of small solutions to a relativistic nonlinear Schrödinger equation
,”
Commun. Math. Phys.
189
,
73
105
(
1997
).
19.
M.
Degiovanni
and
M.
Marzocchi
, “
A critical point theory for nonsmooth functionals
,”
Ann. Mat. Pura Appl.
167
,
73
100
(
1994
).
20.
B.
Hartmann
and
W. J.
Zakrzewski
, “
Electrons on hexagonal lattices and applications to nanotubes
,”
Phys. Rev. B
68
,
184302
(
2003
).
21.
A.
Ioffe
and
E.
Schwartzman
, “
Metric critical point theory 1. Morse regularity and homotopic stability of a minimum
,”
J. Math. Pures Appl.
75
,
125
153
(
1996
).
22.
G.
Katriel
, “
Mountain pass theorems and global homeomorphism theorems
,”
Ann. Inst. Henri Poincare, Anal. Non Lineaire
11
,
189
209
(
1994
).
23.
C. E.
Kenig
,
G.
Ponce
, and
L.
Vega
, “
The Cauchy problem for quasilinear Schrödinger equations
,”
Invent. Math.
158
,
343
388
(
2004
).
24.
A. M.
Kosevich
,
B.
Ivanov
, and
A. S.
Kovalev
, “
Magnetic solitons
,”
Phys. Rep.
194
,
117
238
(
1990
).
25.
S.
Kurihara
, “
Large-amplitude quasi-solitons in superfluid films
,”
J. Phys. Soc. Jpn.
50
,
3262
3267
(
1981
).
26.
H.
Lange
,
M.
Poppenperg
, and
H.
Teismann
, “
Nash-Moser methods for the solutions of quasilinear Schrödinger equations
,”
Commun. Partial Differ. Equ.
24
,
1399
1418
(
1999
).
27.
L. L.
Lions
, “
The concentration-compactness principle in the calculus of variations. The locally compact case. Part I and II
,”
Ann. Inst. Henri Poincare, Anal. Non Lineaire
1
,
109
145
and
223
(
1984
).
28.
J.
Liu
and
Y.
Guo
, “
Critical point theory for nonsmooth functionals
,”
Nonlinear Anal.
66
,
2731
2741
(
2007
).
29.
J.
Liu
,
Y.
Wang
, and
Z.-Q.
Wang
, “
Soliton solutions for quasilinear Schrödinger equations, II
,”
J. Differ. Equations
187
,
473
493
(
2003
).
30.
J.
Liu
,
Y.
Wang
, and
Z.-Q.
Wang
, “
Solutions for quasilinear Schrödinger equations via the Nehari method
,”
Commun. Partial Differ. Equ.
29
,
879
901
(
2004
).
31.
J.
Liu
and
Z.-Q.
Wang
, “
Soliton solutions for quasilinear Schrödinger equations I
,”
Proc. Am. Math. Soc.
131
,
441
448
(
2003
).
32.
J.
Liu
,
Z.-Q.
Wang
, and
Y.
Guo
, “
Multibump solutions for quasilinear elliptic equations
,”
J. Funct. Anal.
262
,
4040
4102
(
2012
).
33.
X.
Liu
,
J.
Liu
, and
Z.-Q.
Wang
, “
Ground states for quasilinear Schrödinger equations with critical growth
,”
Calculus Var. Partial Differ. Equ.
46
,
641
669
(
2013
).
34.
Z.
Liu
and
Z.-Q.
Wang
, “
Multi-bump type nodal solutions having a prescribed number of nodal domains, I and II
,”
Ann. Inst. Henri Poincare, Anal. Non Lineaire
22
,
597
608
and
609
(
2005
).
35.
M.
Poppenberg
,
K.
Schmitt
, and
Z.-Q.
Wang
, “
On the existence of solutions to quasilinear Schrödinger equations
,”
Calculus Var. Partial Differ. Equ.
14
,
329
344
(
2002
).
36.
P. H.
Rabinowitz
, “
A variational approach to multibump solutions of differential equations
,”
Contemp. Math.
198
,
31
43
(
1996
).
37.
P. H.
Rabinowitz
, “
Multibump solutions of differential equations: an overview
,”
Chin. J. Math.
24
,
1
36
(
1996
).
38.
B.
Ritchie
, “
Relativistic self-focusing and channel formation in laser-plasma interactions
,”
Phys. Rev. E
50
,
R687
R689
(
1994
).
39.
E.
Séré
, “
Existence of infinitely many homoclinic orbits in Hamiltonian systems
,”
Math. Z.
209
,
27
42
(
1992
).
40.
E.
Séré
, “
Looking for Bernoulli shift
,”
Ann. Inst. Henri Poincare, Anal. Non Lineaire
209
,
561
590
(
1993
).
You do not currently have access to this content.