We present a new general framework to construct an action functional for a non-potential field theory. The key idea relies on representing the governing equations relative to a diffeomorphic flow of curvilinear coordinates which is assumed to be functionally dependent on the solution field. Such flow, which will be called the conjugate flow, evolves in space and time similarly to a physical fluid flow of classical mechanics and it can be selected in order to symmetrize the Gâteaux derivative of the field equations with respect to suitable local bilinear forms. This is equivalent to requiring that the governing equations of the field theory can be derived from a principle of stationary action on a Lie group manifold. By using a general operator framework, we obtain the determining equations of such manifold and the corresponding conjugate flow action functional. In particular, we study scalar and vector field theories governed by second-order nonlinear partial differential equations. The identification of transformation groups leaving the conjugate flow action functional invariant could lead to the discovery of new conservation laws in fluid dynamics and other disciplines.

1.
R.
Aris
,
Vectors, Tensors and the Basic Equations of Fluid Mechanics
(
Dover publications
,
1989
).
2.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
1967
).
3.
T. B.
Benjamin
, “
A unified theory of conjugate flows
,”
Philos. Trans. R. Soc. London, Ser. A
269
(
1201
),
587
643
(
1971
).
4.
T. B.
Benjamin
, “
Conjugate-flow theory for heterogeneous compressible fluids, with application to non-uniform suspensions of gas bubbles in liquids
,”
J. Fluid. Mech.
54
,
545
563
(
1972
).
5.
V.
Berdichevsky
,
Variational Principles of Continuum Mechanics: I. Fundamentals
(
Springer
,
2009
).
6.
G. W.
Bluman
and
S. C.
Anco
,
Symmetry and Integration Methods for Differential Equations
, 1st ed. (
Springer
,
2002
).
7.
F. P.
Bretherton
, “
A note on Hamilton's principle for perfect fluids
,”
J. Fluid Mech.
44
,
19
31
(
1970
).
8.
O.
Calin
and
D.-C.
Chang
,
Geometric Mechanics on Riemannian Manifolds: Applications to Partial Differential Equations
, 1st ed. (
Birkhäuser
,
Boston
,
2004
).
9.
F.
Cipriano
and
A. B.
Cruzeiro
, “
Navier-Stokes equation and diffusions on the group of homeomorphisms of the torus
,”
Commun. Math. Phys.
275
,
255
269
(
2007
).
10.
C.
Eckart
, “
Variation principles of hydrodynamics
,”
Phys. Fluids
3
(
3
),
421
427
(
1960
).
11.
A.
Einstein
,
Relativity: The Special and General Theory
(
Henry Holt and Company
,
New York
,
1920
).
12.
G. L.
Eyink
, “
Stochastic least-action principle for the incompressible Navier-Stokes equation
,”
Physica D
239
(
14–15
),
1236
1240
(
2010
).
13.
V. M.
Filippov
,
Variational Principles for Nonpotential Operators
(
American Mathematical Society
,
1989
).
14.
B. A.
Finlayson
, “
Existence of variational principles for the Navier-Stokes equation
,”
Phys. Fluids
15
(
6
),
963
967
(
1972
).
15.
B. A.
Finlayson
,
The Method of Weighted Residuals and Variational Principles
(
Academic Press
,
1972
).
16.
A.
Inoue
and
T.
Funaki
, “
On a new derivation of the Navier-Stokes equation
,”
Commun. Math. Phys.
65
,
83
90
(
1979
).
17.
I. M.
Gelfand
and
S. V.
Formin
,
Calculus of Variations
(
Dover
,
2000
).
18.
D. A.
Gomes
, “
A variational formulation for the Navier-Stokes equation
,”
Commun. Math. Phys.
257
,
227
234
(
2005
).
19.
D. A.
Gomes
, “
On a variational principle for the Navier-Stokes equation
,” in
Proceedings of the International Conference on Mathematical Analysis of Random Phenomena
, edited by
A. B.
Cruzeiro
,
H.
Ouerdiane
, and
N.
Obata
(
World Scientific
,
2007
), pp.
93
100
.
20.
J. W.
Herivel
, “
The derivation of the equations of motion of an ideal fluid by Hamilton's principle
,”
Proc. Cambridge Philos. Soc.
51
,
344
349
(
1955
).
21.
B.
Jouvet
and
R.
Phythian
, “
Quantum aspects of classical and statistical fields
,”
Phys. Rev. A
19
,
1350
1355
(
1979
).
22.
R. R.
Kerswell
, “
Variational principle for the Navier-Stokes equations
,”
Phys. Rev. E
59
(
5
),
5482
5494
(
1999
).
23.
L. D.
Landau
and
E. M.
Lifshitz
,
The Classical Theory of Fields
, 2nd ed. (
Addison-Wesley Publishing Company
,
Reading, MA
,
1962
).
24.
D.
Lovelock
and
H.
Rund
,
Tensors, Differential Forms and Variational Principles
(
Dover publications
,
1989
).
25.
H.
Luo
and
T. R.
Bewley
, “
On the contravariant form of the Navier-Stokes equations in time-dependent curvilinear coordinate systems
,”
J. Comput. Phys.
199
,
355
375
(
2004
).
26.
F.
Magri
, “
Variational formulation for every linear equation
,”
Int. J. Eng. Sci.
12
,
537
549
(
1974
).
27.
F.
Magri
, “
An operator approach to Poisson brackets
,”
Ann. Phys.
99
,
196
228
(
1976
).
28.
P. C.
Martin
,
E. D.
Siggia
, and
H. A.
Rose
, “
Statistical dynamics of classical systems
,”
Phys. Rev. A
8
,
423
437
(
1973
).
29.
T.
Matolcsi
and
P.
Vàn
, “
Absolute time derivatives
,”
J. Math. Phys.
48
,
053507
1
053507
19
(
2007
).
30.
S. D.
Mobbs
, “
Variational principles for perfect and dissipative fluid flows
,”
Proc. R. Soc. London, Ser. A
381
,
457
468
(
1982
).
31.
P. J.
Morrison
, “
Hamiltonian description of the ideal fluid
,”
Rev. Mod. Phys.
70
,
467
521
(
1998
).
32.
P. M.
Morse
and
H.
Feshbach
,
Methods of Theoretical Physics
(
McGraw-Hill
,
1953
).
33.
M. Z.
Nashed
, “
Differentiability and related properties of non-linear operators: some aspects of the role of differentials in non-linear functional analysis
,” in
Nonlinear Functional Analysis and Applications
, edited by
L. B.
Rall
(
Academic Press
,
1971
).
34.
Y.
Kosmann-Schwarzbach
, “
The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century
,” Springer
2011
.
35.
D. L.
Rapoport
, “
Random diffeomorphisms and integration of the classical Navier-Stokes equations
,”
Rep. Math. Phys.
49
,
1
27
(
2002
).
36.
J.
Serrin
, “
Mathematical principles of classical fluid mechanics
,” in
Handbuch der Physik
, 1 Band VIII/1, Strömungsmechanik (
Springer
,
1959
), pp.
125
262
.
37.
J. H.
Spurk
and
N.
Aksel
,
Fluid Mechanics
, 2nd ed. (
Springer-Verlag
,
Berlin
,
2008
).
38.
R.
Temam
,
Navier-Stokes Equations and Nonlinear Functional Analysis
, 2nd ed. (
SIAM
,
1995
).
39.
J. L.
Thiffeault
, “
Covariant time derivatives for dynamical systems
,”
J. Phys. A
34
(
29
),
5875
5885
(
2001
).
40.
J. L.
Thiffeault
, “
Advection-diffusion in Lagrangian coordinates
,”
Phys. Lett. A
309
,
415
4225
(
2003
).
41.
E.
Tonti
, “
Variational formulation for nonlinear differential equations (i)
,”
Bull. Acad. Roy. Belg., Cl. Sci. Ser. 5
55
(
3
),
137
165
(
1969
).
42.
E.
Tonti
, “
Variational formulation for nonlinear differential equations (ii)
,”
Bull. Acad. Roy. Belg., Cl. Sci. Ser. 5
55
(
4
),
262
278
(
1969
).
43.
E.
Tonti
, “
On the variational formulation for linear initial value problems
,”
Ann. Mat. Pura Appl.
XCV
,
331
360
(
1973
).
44.
E.
Tonti
, “
Variational formulation for every nonlinear problem
,”
Int. J. Eng. Sci.
22
(
11/12
),
1343
1371
(
1984
).
45.
E.
Tonti
, “
Inverse problem: its general solution
,” in
Differential Geometry, Calculus of Variations and Their Applications
, edited by
G. M.
Rassias
and
T. M.
Rassias
(
CRC Press
,
1985
), pp.
497
510
.
46.
C.
Truesdell
, “
The physical components of vectors and tensors
,”
Z. Angew. Math. Mech.
33
(
10/11
),
345
356
(
1953
).
47.
M. M.
Vainberg
,
Variational Methods for the Study of Nonlinear Operators
(
Holden-Day
,
1964
).
48.
D.
Venturi
, “
Convective derivatives and Reynolds transport in curvilinear time-dependent coordinates
,”
J. Phys. A: Math. Theor.
42
,
125203
1
125203
16
(
2009
).
49.
D.
Venturi
, “
A fully symmetric nonlinear biorthogonal decomposition theory for random fields
,”
Physica D
240
(
4–5
),
415
425
(
2011
).
50.
V.
Volterra
,
Leçons sur les fonctions de ligne
(
Gauthier Villas
,
Paris
,
1913
).
51.
S.
Weinberg
,
Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity
(
John Wiley & Sons
,
1972
).
52.
K.
Yasue
, “
A variational principle for the Navier-Stokes equation
,”
J. Funct. Anal.
51
,
133
141
(
1983
).
You do not currently have access to this content.