We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

1.
S. B.
Bravyi
and
A. Yu.
Kitaev
, “
Fermionic quantum computation
,”
Ann. Phys.
298
,
210
226
(
2002
).
2.
S.
Bravyi
,
D. P.
DiVincenzo
, and
D.
Loss
,
Ann. Phys.
326
,
2793
(
2011
).
3.
H.-D.
Chen
and
Z.
Nussinov
, “
Exact results of the Kitaev model on a hexagonal lattice: spin states, string and brane correlators, and anionic excitations
,”
J. Phys. A: Math. Theor.
41
,
075001
(
2008
).
4.
N.
Datta
,
R.
Fernández
, and
J.
Fröhlich
, “
Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states
,”
J. Stat. Phys.
84
,
455
534
(
1996
).
5.
N.
Datta
,
R.
Fernàndez
,
J.
Fröhlich
, and
L.
Rey-Bellet
, “
Low-temperature phase diagrams of quantum lattice systems. II. Convergent perturbation expansions and stability in systems with infinite degeneracy
,”
Helv. Phys. Acta
69
,
752
820
(
1996
).
6.
W.
DeGottardi
,
D.
Sen
, and
S.
Vishveshwara
, “
Topological phases, Majorana modes and quench dynamics in a spin ladder system
,”
New J. Phys.
13
,
065028
(
2011
).
7.
F. J.
Dyson
,
E. H.
Lieb
, and
B.
Simon
, “
Phase transitions in quantum spin systems with isotropic and nonisotropic interactions
,”
J. Stat. Phys.
18
,
335
383
(
1978
).
8.
X.-Y.
Feng
,
G.-M.
Zhang
, and
T.
Xiang
, “
Topological characterization of quantum phase transitions in a spin-1/2 model
,”
Phys. Rev. Lett.
98
,
087204
(
2007
).
9.
M.
Freedman
,
M.
Larsen
, and
Z.
Wang
, “
A modular functor which is universal for quantum computation
,”
Commun. Math. Phys.
227
,
605
622
(
2002
).
10.
M. H.
Freedman
,
A.
Kitaev
,
M. J.
Larsen
, and
Z.
Wang
, “
Topological quantum computation
,”
Bull. Am. Math. Soc.
40
,
31
38
(
2003
).
11.
J.
Fröhlich
,
B.
Simon
, and
T.
Spencer
, “
Infrared bounds, phase transitions, and continuous symmetry breaking
,”
Commun. Math. Phys.
50
,
79
85
(
1976
).
12.
J.
Fröhlich
,
R.
Israel
,
E. H.
Lieb
, and
B.
Simon
, “
Phase transitions and reflection positivity. I. General theory and long range lattice models
,”
Commun. Math. Phys.
62
,
1
34
(
1978
);
J.
Fröhlich
,
R.
Israel
,
E. H.
Lieb
, and
B.
Simon
, “
Phase transitions and reflection positivity. II. Short range lattice models and coulomb systems
,”
J. Stat. Phys.
22
,
297
347
(
1980
).
13.
J.
Fröhlich
, “
Statistics of fields, the Yang-Baxter equation, and the theory of knots and links
,” in
Nonperturbative Quantum Field Theory
, Cargèse Lectures, edited by
G.
't Hooft
 et al (
Plenum Press
,
New York
,
1988
).
14.
J.
Glimm
and
A.
Jaffe
,
Quantum Physics
, 2nd ed. (
Springer-Verlag
,
1987
).
15.
J.
Glimm
,
A.
Jaffe
, and
T.
Spencer
, “
The Wightman axioms and particle structure in a P(ϕ)2 quantum field model
,”
Ann. Math.
100
,
585
632
(
1974
).
16.
J.
Glimm
,
A.
Jaffe
, and
T.
Spencer
, “
Phase transitions for
$\phi ^{4}_{2}$
ϕ24
quantum fields
,”
Commun. Math. Phys.
45
,
203
216
(
1975
).
17.
G. A.
Goldin
, “
Nonrelativistic current algebras as unitary representations of groups
,”
J. Math. Phys.
12
,
462
(
1971
).
18.
Y.-C.
He
and
Y.
Chen
, Measuring fermions qubit state and non-Abelian braiding statistics in quenched inhomogeneous spin ladders, e-print arXiv:1210.5139.
19.
A.
Jaffe
and
F. L.
Pedrocchi
, “
Reflection positivity for Majorana fermions
,” e-print arXiv:1305.1792.
20.
T.
Kato
, “
On the convergence of the perturbation method I
,”
Prog. Theor. Phys.
4
,
514
523
(
1949
).
21.
T.
Kato
,
Perturbation Theory for Linear Operators
(
Springer-Verlag
,
New York
,
1966
).
22.
A. Yu.
Kitaev
,
A. H.
Sen
, and
M. N.
Vyalyi
,
Classical and Quantum Computation
(
American Mathematical Society
,
Providence, RI
,
2002
).
23.
A. Yu.
Kitaev
, “
Fault-tolerant quantum computation by anyons
,”
Ann. Phys.
303
,
2
30
(
2003
).
24.
A.
Kitaev
, “
Anyons in an exactly solved model and beyond
,”
Ann. Phys.
321
,
2
111
(
2006
).
25.
K. I.
Kugel
and
D. I.
Khomskii
, “
The Jahn-Teller effect and magnetism: transition metal compounds
,”
Sov. Phys. Usp.
25
,
231
256
(
1982
).
26.
H.-H.
Lai
and
O. I.
Motrunich
, “
Majorana spin liquids on a two-leg ladder
,”
Phys. Rev. B
84
,
235148
(
2011
).
27.
J. M.
Leinaas
and
J.
Myrheim
, “
On the theory of identical particles
,”
Nuovo Cimento B
37
,
1
23
(
1977
).
28.
E. H.
Lieb
, “
Flux phase of the half-filled band
,”
Phys. Rev. Lett.
73
,
2158
2161
(
1994
).
29.
Z.-X.
Liu
,
Z.-B.
Yang
,
Y.-J.
Han
,
W.
Yi
, and
X.-G.
Wen
, “
Symmetry-protected topological phases in spin ladders with two-body interactions
,”
Phys. Rev. B
86
,
195122
(
2012
).
30.
S.
Lloyd
, “
Quantum computation with Abelian anyons
,”
Quantum Inf. Process.
1
,
13
(
2002
).
31.
N.
Macris
and
B.
Nachtergaele
, “
On the flux phase conjecture at half-filling: An improved proof
,”
J. Stat. Phys.
85
,
745
761
(
1996
).
32.
K.
Osterwalder
and
R.
Schrader
, “
Axioms for Euclidean Green's functions. I and II
,”
Commun. Math. Phys.
31
,
83
112
(
1973
);
K.
Osterwalder
and
R.
Schrader
,
Commun. Math. Phys.
42
,
281
305
(
1975
).
33.
K.
Osterwalder
and
E.
Seiler
, “
Gauge field theories on a lattice
,”
Ann. Phys.
110
,
440
471
(
1978
).
34.
V.
Lahtinen
,
G.
Kells
,
A.
Carollo
,
T.
Stitt
,
J.
Vala
, and
J. K.
Pachos
, “
Spectrum of the non-abelian phase in Kitaev's honeycomb lattice mode
,”
Ann. Phys.
323
,
2286
2310
(
2008
).
35.
J. K.
Pachos
,
Introduction to Topological Quantum Computation
(
Cambridge University Press
,
2012
).
36.
F. L.
Pedrocchi
,
S.
Chesi
, and
D.
Loss
, “
Physical solutions of the Kitaev honeycomb model
,”
Phys. Rev. B
84
,
165414
(
2011
).
37.
F. L.
Pedrocchi
,
S.
Chesi
,
S.
Gangadharaiah
, and
D.
Loss
, “
Majorana states in inhomogeneous spin ladders
,”
Phys. Rev. B
86
,
205412
(
2012
).
38.
J.
Preskill
, Lecture Notes for Physics 219: Quantum computation, see http://www.theory.caltech.edu/~preskill/ph219/topological.pdf.
39.
A.
Saket
,
S. R.
Hassan
, and
R.
Shankar
, “
Manipulating unpaired Majorana fermions in a quantum spin chain
,”
Phys. Rev. B
82
,
174409
(
2010
).
40.
S. S.
Schweber
,
An Introduction to Relativistic Quantum Field Theory
(
Row
,
Peterson and Company
,
1961
).
41.
R. F.
Streater
and
I. F.
Wilde
, “
Fermion states of a Boson field
,”
Nucl. Phys. B
24
,
561
575
(
1970
).
42.
F.
Wilczek
, “
Quantum mechanics of fractional-spin particles
,”
Phys. Rev. Lett.
49
,
957
959
(
1982
).
You do not currently have access to this content.