Noncommutative quantum mechanics can be considered as a first step in the construction of quantum field theory on noncommutative spaces of generic form, when the commutator between coordinates is a function of these coordinates. In this paper we discuss the mathematical framework of such a theory. The noncommutativity is treated as an external antisymmetric field satisfying the Jacobi identity. First, we propose a symplectic realization of a given Poisson manifold and construct the Darboux coordinates on the obtained symplectic manifold. Then we define the star product on a Poisson manifold and obtain the expression for the trace functional. The above ingredients are used to formulate a nonrelativistic quantum mechanics on noncommutative spaces of general form. All considered constructions are obtained as a formal series in the parameter of noncommutativity. In particular, the complete algebra of commutation relations between coordinates and conjugated momenta is a deformation of the standard Heisenberg algebra. As examples we consider a free particle and an isotropic harmonic oscillator on the rotational invariant noncommutative space.

1.
M.
Douglas
and
N.
Nekrasov
,
Rev. Mod. Phys.
73
,
977
1029
(
2001
);
2.
T. C.
Adorno
,
D. M.
Gitman
,
A. E.
Shabad
, and
D. V.
Vassilevich
,
Phys. Rev. D
84
,
085031
(
2011
).
3.
S.
Doplicher
,
K.
Fredenhagen
, and
J.
Roberts
,
Commum. Math. Phys.
172
,
187
(
1995
).
4.
M.
Buric
and
M.
Wohlgenannt
,
J. High Energy Phys.
03
(
2010
)
053
.
5.
H.
Grosse
and
R.
Wulkenhaar
,
J. High Energy Phys.
12
(
2003
)
019
.
6.
M.
Gomes
and
V. G.
Kupriyanov
,
Phys. Rev. D
79
,
125011
(
2009
).
7.
A.
Fring
,
L.
Gouba
, and
F. G.
Scholtz
,
J. Phys. A
43
,
345401
(
2010
).
8.
B.
Bagchi
and
A.
Fring
,
Phys. Lett. A
373
,
4307
(
2009
).
9.
E.
Harikumar
,
T.
Juric
, and
S.
Meljanac
,
Phys. Rev. D
84
,
085020
(
2011
);
E.
Harikumar
,
T.
Juric
, and
S.
Meljanac
,
Phys. Rev. D
86
,
045002
(
2012
).
10.
V.
Galikova
and
P.
Presnajder
,
J. Phys.: Conf. Ser.
343
,
012096
(
2012
).
11.
M. V.
Karasev
, “
Analogues of objects of the theory of Lie groups for nonlinear Poisson brackets
,”
Izv. Akad. Nauk SSSR, Ser. Mat. (Russia)
50
(
3
),
638
(
1986
).
12.
A.
Coste
,
P.
Dazord
, and
A.
Weinstein
,
Groupoides Symplectiques
,
Publ. Dép. Math. Nouvelle Sér. A (French)
(
Univ. Claude-Berbard
,
Lyon
,
1987
), Vol.
87–2
, pp.
1
62
.
13.
V. I.
Arnold
,
Mathematical Methods of Classical Mechanics
(
Springer
,
New York
,
1978
).
14.
A.
S.
Cattaneo
,
B.
Dherin
,
G.
Felder
,
Commun. Math. Phys.
253
,
645
(
2005
).
15.
16.
G.
Dito
and
D.
Sternheimer
,
Deformation Quantization: Genesis, Developments and Metamorphoses
,
IRMA Lect. Math. Theor. Phys. 1
(
de Gruyter
,
Berlin
,
2002
), pp.
9
54
;
17.
V. G.
Kupriyanov
and
D. V.
Vassilevich
,
Eur. Phys. J. C
58
,
627
637
(
2008
).
18.
M.
Gomes
,
V. G.
Kupriyanov
, and
A. J.
da Silva
,
Phys. Rev. D
81
,
085024
(
2010
).
19.
D. M.
Gitman
and
V. G.
Kupriyanov
,
Eur. Phys. J. C
54
,
325
(
2008
).
20.
G.
Felder
and
B.
Shoikhet
,
Lett. Math. Phys.
53
,
75
86
(
2000
).
21.
V. G.
Kupriyanov
, “
Hydrogen atom on curved noncommutative space
,”
J. Phys. A
46
,
245303
(
2013
).
22.
M.
Chaichian
,
M. M.
Sheikh-Jabbari
, and
A.
Tureanu
,
Phys. Rev. Lett.
86
,
2716
(
2001
).
23.
J.
Madore
,
Class. Quantum Grav.
9
,
69
(
1992
);
G.
Alexanian
,
A.
Pinzul
, and
A.
Stern
,
Nucl. Phys. B
600
,
531
(
2001
);
H.
Grosse
,
J.
Madore
, and
H.
Steinacker
,
Int. J. Mod. Phys. A
17
,
2095
(
2002
).
24.
A. B.
Hammou
,
M.
Lagraa
, and
M. M.
Sheikh-Jabbari
,
Phys. Rev. D
66
,
025025
(
2002
);
You do not currently have access to this content.