We explicitly construct parametrices for magnetic Schrödinger operators on

${\mathbb {R}}^d$
Rd and prove that they provide a complete small-t expansion for the corresponding heat kernel, both on and off the diagonal.

1.
S.
Minakshisundaram
and
Å.
Pleijel
, “
Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds
,”
Can. J. Math.
1
,
242
256
(
1949
).
2.
S.
Minakshisundaram
, “
Eigenfunctions on Riemannian manifolds
,”
J. Indian Math. Soc., New Ser.
17
,
159
165
(
1953
).
3.
M.
Berger
,
P.
Gauduchon
, and
E.
Mazet
,
Le spectre d'une variété riemannienne
,
Lecture Notes in Mathematics
, Vol.
194
(
Springer-Verlag
,
Berlin
,
1971
), pp.
vii+251
.
4.
N.
Berline
,
E.
Getzler
, and
M.
Vergne
,
Heat Kernels and Dirac Operators
,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
, Vol.
298
(
Springer-Verlag
,
Berlin
,
1992
), pp.
viii+369
.
5.
P. B.
Gilkey
,
Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem
, 2nd ed., Studies in Advanced Mathematics (
CRC Press
,
Boca Raton, FL
,
1995
), pp.
x+516
.
6.
K.
Kirsten
,
Spectral Functions in Mathematics and Physics
(
Chapman and Hall/CRC
,
Boca Raton, FL
,
2001
), p.
400
.
7.
M.
Atiyah
,
R.
Bott
, and
V. K.
Patodi
, “
On the heat equation and the index theorem
,”
Invent. Math.
19
,
279
330
(
1973
).
8.
M.
Loss
and
B.
Thaller
, “
Optimal heat kernel estimates for Schrödinger operators with magnetic fields in two dimensions
,”
Commun. Math. Phys.
186
,
95
107
(
1997
).
9.
L.
Erdős
, “
Dia- and paramagnetism for nonhomogeneous magnetic fields
,”
J. Math. Phys.
38
,
1289
1317
(
1997
).
10.
Y.
Colin de Verdière
, “
Une formule de traces pour l'opérateur de Schrödinger dans R3
,”
Ann. Sci. Éc. Normale Super. (4)
14
,
27
39
(
1981
).
11.
M.
Hitrik
, “
Existence of resonances in magnetic scattering
,”
J. Comput. Appl. Math.
148
,
91
97
(
2002
).
12.
M.
Hitrik
and
I.
Polterovich
, “
Regularized traces and Taylor expansions for the heat semigroup
,”
J. Lond. Math. Soc.
68
(
2
),
402
418
(
2003
).
13.
E.
Korotyaev
and
A.
Pushnitski
, “
On the high-energy asymptotics of the integrated density of states
,”
Bull. London Math. Soc.
35
,
770
776
(
2003
).
14.
B.
Simon
, “
Schrödinger operators with singular magnetic vector potentials
,”
Math. Z.
131
,
361
370
(
1973
).
15.
H.
Leinfelder
and
C. G.
Simader
, “
Schrödinger operators with singular magnetic vector potentials
,”
Math. Z.
176
,
1
19
(
1981
).
16.
B.
Simon
,
Functional Integration and Quantum Physics
, 2nd ed. (
AMS Chelsea Publishing
,
Providence, RI
,
2005
), pp.
xiv+306
.
17.
M.
Kac
, “
Can one hear the shape of a drum?
Am. Math. Monthly
73
,
1
23
(
1966
).
18.
H. P.
McKean
 Jr.
and
I. M.
Singer
, “
Curvature and the eigenvalues of the Laplacian
,”
J. Diff. Geom.
1
,
43
69
(
1967
).
19.
K.
Yosida
, “
On the fundamental solution of the parabolic equation in a Riemannian space
,”
Osaka Math. J.
5
,
65
74
(
1953
).
20.
D.
Grieser
, “
Notes on heat kernel asymptotics
” (
2004
), see www.staff.uni-oldenburg.de/daniel.grieser/wwwlehre/Schriebe/heat.pdf.
You do not currently have access to this content.