We explicitly construct parametrices for magnetic Schrödinger operators on ${\mathbb {R}}^d$ and prove that they provide a complete small-t expansion for the corresponding heat kernel, both on and off the diagonal.
REFERENCES
1.
S.
Minakshisundaram
and Å.
Pleijel
, “Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds
,” Can. J. Math.
1
, 242
–256
(1949
).2.
S.
Minakshisundaram
, “Eigenfunctions on Riemannian manifolds
,” J. Indian Math. Soc., New Ser.
17
, 159
–165
(1953
).3.
M.
Berger
, P.
Gauduchon
, and E.
Mazet
, Le spectre d'une variété riemannienne
, Lecture Notes in Mathematics
, Vol. 194
(Springer-Verlag
, Berlin
, 1971
), pp. vii+251
.4.
N.
Berline
, E.
Getzler
, and M.
Vergne
, Heat Kernels and Dirac Operators
, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
, Vol. 298
(Springer-Verlag
, Berlin
, 1992
), pp. viii+369
.5.
P. B.
Gilkey
, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem
, 2nd ed., Studies in Advanced Mathematics (CRC Press
, Boca Raton, FL
, 1995
), pp. x+516
.6.
K.
Kirsten
, Spectral Functions in Mathematics and Physics
(Chapman and Hall/CRC
, Boca Raton, FL
, 2001
), p. 400
.7.
M.
Atiyah
, R.
Bott
, and V. K.
Patodi
, “On the heat equation and the index theorem
,” Invent. Math.
19
, 279
–330
(1973
).8.
M.
Loss
and B.
Thaller
, “Optimal heat kernel estimates for Schrödinger operators with magnetic fields in two dimensions
,” Commun. Math. Phys.
186
, 95
–107
(1997
).9.
L.
Erdős
, “Dia- and paramagnetism for nonhomogeneous magnetic fields
,” J. Math. Phys.
38
, 1289
–1317
(1997
).10.
Y.
Colin de Verdière
, “Une formule de traces pour l'opérateur de Schrödinger dans R3
,” Ann. Sci. Éc. Normale Super. (4)
14
, 27
–39
(1981
).11.
M.
Hitrik
, “Existence of resonances in magnetic scattering
,” J. Comput. Appl. Math.
148
, 91
–97
(2002
).12.
M.
Hitrik
and I.
Polterovich
, “Regularized traces and Taylor expansions for the heat semigroup
,” J. Lond. Math. Soc.
68
(2
), 402
–418
(2003
).13.
E.
Korotyaev
and A.
Pushnitski
, “On the high-energy asymptotics of the integrated density of states
,” Bull. London Math. Soc.
35
, 770
–776
(2003
).14.
B.
Simon
, “Schrödinger operators with singular magnetic vector potentials
,” Math. Z.
131
, 361
–370
(1973
).15.
H.
Leinfelder
and C. G.
Simader
, “Schrödinger operators with singular magnetic vector potentials
,” Math. Z.
176
, 1
–19
(1981
).16.
B.
Simon
, Functional Integration and Quantum Physics
, 2nd ed. (AMS Chelsea Publishing
, Providence, RI
, 2005
), pp. xiv+306
.17.
M.
Kac
, “Can one hear the shape of a drum?
” Am. Math. Monthly
73
, 1
–23
(1966
).18.
H. P.
McKean
Jr. and I. M.
Singer
, “Curvature and the eigenvalues of the Laplacian
,” J. Diff. Geom.
1
, 43
–69
(1967
).19.
K.
Yosida
, “On the fundamental solution of the parabolic equation in a Riemannian space
,” Osaka Math. J.
5
, 65
–74
(1953
).20.
D.
Grieser
, “Notes on heat kernel asymptotics
” (2004
), see www.staff.uni-oldenburg.de/daniel.grieser/wwwlehre/Schriebe/heat.pdf.© 2013 AIP Publishing LLC.
2013
AIP Publishing LLC
You do not currently have access to this content.