One of the main results of scale relativity as regards the foundation of quantum mechanics is its explanation of the origin of the complex nature of the wave function. The scale relativity theory introduces an explicit dependence of physical quantities on scale variables, founding itself on the theorem according to which a continuous and non-differentiable space-time is fractal (i.e., scale-divergent). In the present paper, the nature of the scale variables and their relations to resolutions and differential elements are specified in the non-relativistic case (fractal space). We show that, owing to the scale-dependence which it induces, non-differentiability involves a fundamental two-valuedness of the mean derivatives. Since, in the scale relativity framework, the wave function is a manifestation of the velocity field of fractal space-time geodesics, the two-valuedness of velocities leads to write them in terms of complex numbers, and yields therefore the complex nature of the wave function, from which the usual expression of the Schrödinger equation can be derived.

1.
G. N.
Ord
,
J. Phys. A: Math. Gen.
16
,
1869
(
1983
).
2.
L.
Nottale
and
J.
Schneider
,
J. Math. Phys.
25
,
1296
(
1984
).
3.
L.
Nottale
and
M.-N.
Célérier
,
J. Phys. A: Math. Theor.
40
,
14471
(
2007
).
4.
L.
Nottale
,
Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity
(
World Scientific
,
Singapore
,
1993
).
5.
M.-N.
Célérier
and
L.
Nottale
,
J. Phys. A: Math. Gen.
39
,
12565
(
2006
).
6.
M.-N.
Célérier
and
L.
Nottale
,
Electromagn. Phenom.
3
,
83
(
2003
).
7.
M.-N.
Célérier
and
L.
Nottale
,
J. Phys. A: Math. Gen.
37
,
931
(
2004
).
8.
J.
Cresson
,
J. Math. Phys.
44
,
4907
(
2003
).
9.
L.
Nottale
, in “
Relativity in general
,”
Proceedings of the Spanish Relativity Meeting, Solas, 1993
, edited by
J. Diaz
Alonzo
and
M. Lorente
Paramo
(
Editions Frontières
,
1994
), pp.
121
132
.
10.
L.
Nottale
,
Chaos, Solitons & Fractals
7
,
877
(
1996
).
11.
L.
Nottale
,
Scale Relativity and Fractal Space-Time. A New Approach to Unifying Relativity and Quantum Mechanics
(
Imperial College Press
,
London
,
2011
).
12.
M.-N.
Célérier
,
J. Math. Phys.
50
,
123101
(
2009
).
13.
M.-N.
Célérier
and
L.
Nottale
, “
Emergence of complex and spinor wave functions in Scale Relativity. II. Lorentz invariance and bi-spinors
,”
J. Math. Phys.
(submitted).
14.
F. Ben
Adda
and
J.
Cresson
,
Acad. Sci., Paris, C. R.
330
,
261
(
2000
).
15.
J.
Cresson
,
Chaos, Solitons & Fractals
14
,
553
(
2002
).
16.
L.
Nottale
,
Adv. Appl. Clifford Algebras
18
,
917
(
2008
).
17.
M.
Postnikov
,
Leçons de Géométrie. Groupes et algèbres de Lie
(
Leçon 14
,
Mir, Moscow
,
1982
).
18.
E.
Cartan
,
Oeuvres Complètes
(
Gauthier-Villars
,
Paris
,
1953
).
19.
L.
Nottale
,
J. Phys. A: Math. Theor.
42
,
275306
(
2009
).
20.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
21.
L.
Nottale
,
Astron. Astrophys.
327
,
867
(
1997
).
22.
L.
Nottale
,
G.
Schumacher
, and
E. T.
Lefèvre
,
Astron. Astrophys.
361
,
379
(
2000
).
23.
D.
Da Rocha
and
L.
Nottale
,
Chaos, Solitons & Fractals
16
,
565
(
2003
).
24.
L.
Nottale
,
M.-N.
Célérier
, and
T.
Lehner
,
J. Math. Phys.
47
,
032303
(
2006
).
You do not currently have access to this content.