We study X-ray and Divergent beam transforms of Trkalian fields and their relation with Radon transform. We make use of four basic mathematical methods of tomography due to Grangeat, Smith, Tuy, and Gelfand-Goncharov for an integral geometric view on them. We also make use of direct approaches which provide a faster but restricted view of the geometry of these transforms. These reduce to well known geometric integral transforms on a sphere of the Radon or the spherical Curl transform in Moses eigenbasis, which are the members of an analytic family of integral operators. We also discuss their inversion. The X-ray (also Divergent beam) transform of a Trkalian field is Trkalian. Also the Trkalian subclass of X-ray transforms yields Trkalian fields in the physical space. The Riesz potential of a Trkalian field is proportional to the field. Hence, the spherical mean of the X-ray (also Divergent beam) transform of a Trkalian field over all lines passing through a point yields the field at this point. The pivotal point is the simplification of an intricate quantity: Hilbert transform of the derivative of Radon transform for a Trkalian field in the Moses basis. We also define the X-ray transform of the Riesz potential (of order 2) and Biot-Savart integrals. Then, we discuss a mini-twistor representation, presenting a mini-twistor solution for the Trkalian fields equation. This is based on a time-harmonic reduction of wave equation to Helmholtz equation. A Trkalian field is given in terms of a null vector in C3 with an arbitrary function and an exponential factor resulting from this reduction.

1.
K.
Saygili
,
J. Math. Phys.
51
,
033513
(
2010
).
2.
V.
Trkal
,
Časopis pro pěstování matematiky a fysiky
48
,
302
(
1919
)
[
I.
Gregora
,
Czech. J. Phys.
44
(
2
),
97
(
1994
)].
3.
A.
Lakhtakia
,
Czech. J. Phys.
44
(
2
),
89
(
1994
).
4.
M. A.
MacLeod
,
J. Math. Phys.
36
,
2951
(
1995
).
5.
M. A.
MacLeod
,
J. Math. Phys.
39
,
1642
(
1998
).
6.
K.
Saygili
,
Int. J. Mod. Phys. A
23
,
2015
(
2008
).
7.
S.
Deser
,
R.
Jackiw
, and
S.
Templeton
,
Phys. Rev. Lett.
48
,
975
(
1982
).
8.
S.
Deser
,
R.
Jackiw
, and
S.
Templeton
,
Ann. Phys.
140
,
372
(
1982
).
9.
J. F.
Schonfeld
,
Nucl. Phys. B
185
,
157
(
1981
).
10.
A. N.
Aliev
,
Y.
Nutku
, and
K.
Saygili
,
Class. Quantum Grav.
17
,
4111
(
2000
).
11.
K.
Saygili
, e-print arXiv:hep-th/0610307.
12.
K.
Saygili
,
Int. J. Mod. Phys. A
22
,
2961
(
2007
).
13.
P.
Baird
and
J. C.
Wood
,
Harmonic Morphisms Between Riemannian Manifolds
(
Oxford University Press
,
New York
,
2003
).
14.
R.
Pantilie
and
J. C.
Wood
,
Asian J. Math.
6
(
2
),
337
(
2002
).
15.
R.
Pantilie
,
Commun. Anal. Geom.
10
,
779
(
2002
).
16.
S.
Lundquist
,
Arc. Fys.
2
,
361
(
1950
).
17.
J.
Radon
,
Ber. Verh. Saechs. Akad. Wiss. Leipzig, Math.-Phys. Kl.
69
,
262
(
1917
).
19.
H. E.
Moses
,
Siam J. Appl. Math.
21
,
114
(
1971
).
20.
J.
Cantarella
,
D.
DeTurck
, and
H.
Gluck
,
J. Math. Phys.
42
,
876
(
2001
).
21.
R. J.
Parsley
, “
The Biot-Savart operator and electrodynamics on bounded subdomains of the three-sphere
,” Ph.D. thesis (
University of Pennsylvania
,
2004
); see http://users.wfu.edu/parslerj/research/dissertation.parsley.pdf.
22.
I. M.
Gelfand
,
S. G.
Gindikin
, and
M. I.
Graev
,
Selected Topics in Integral Geometry
,
Translations of Mathematical Monographs
(
American Mathematical Society
,
Providence
,
2003
), Vol.
220
.
23.
H.
Minkowski
,
Math. Sb.
25
,
505
(
1904
).
24.
P. G.
Funk
,
Math. Ann.
74
,
278
(
1913
).
25.
F. B.
Gonzalez
, “
John's Equation and the Plane-to Line Transform on R3
,” in
Harmonic Analysis and Integral Geometry
,
Research Notes in Mathematics
, Vol.
422
, edited by
M.
Picardello
(
Chapman and Hall/CRC
,
Florida
,
2001
), p.
1
.
26.
B.
Rubin
,
J. Anal. Math.
77
,
105
(
1999
).
27.
B.
Rubin
,
Fractional Calculus Appl. Anal.
6
(
1
),
25
(
2003
).
28.
P.
Grangeat
, “
Mathematical framework of cone beam 3D reconstruction via the first derivative of the Radon transform
,” in
Mathematical Methods in Tomography
,
Lecture Notes in Mathematics
, Vol.
1497
, edited by
G. T.
Herman
,
A. K.
Louis
, and
F.
Nattarer
(
Springer-Verlag
,
Berlin
,
1991
), p.
66
.
29.
B. D.
Smith
,
IEEE Trans. Med. Imaging
4
(
1
),
14
(
1985
).
30.
H. K.
Tuy
,
SIAM J. Appl. Math.
43
(
3
),
546
(
1983
).
31.
I. M.
Gelfand
and
A. B.
Goncharov
,
Dokl. Akad. Nauk SSSR
290
(
3
),
1037
(
1986
).
I. M.
Gelfand
and
A. B.
Goncharov
, [
Sov. Math. Dokl.
34
,
373
(
1987
)].
32.
C.
Hamaker
,
K. T.
Smith
,
D. C.
Solmon
, and
S. l.
Wagner
,
Rocky Mt J. Math.
10
(
1
),
253
(
1980
).
33.
F.
Natterer
and
F.
Wübbeling
,
Mathematical Methods in Image Reconstruction
(
SIAM
,
Philadelphia
,
2001
).
34.
R.
Penrose
and
W.
Rindler
,
Spinors and Space-Time
(
Cambridge University Press
,
Cambridge
,
1993
), Vol.
1
.
35.
R.
Penrose
and
W.
Rindler
,
Spinors and Space-Time
(
Cambridge University Press
,
Cambridge
,
1993
), Vol.
2
.
36.
E. T.
Whittaker
,
Math. Ann.
57
,
333
(
1903
),
37.
H.
Bateman
,
Proc. London Math. Soc.
s2-1
,
451
(
1904
).
38.
T. N.
Bailey
,
M. G.
Eastwood
,
R.
Gover
, and
L. J.
Mason
,
J. Korean Math. Soc.
40
,
577
(
2003
).
39.
T. N.
Bailey
,
M. G.
Eastwood
,
R.
Gover
, and
L. J.
Mason
,
Math. Proc. Cambridge Philos. Soc.
125
,
67
(
1999
).
40.
M.
Dunajski
and
S.
West
, “
Anti-self-dual conformal structures in neutral signature
,” in
Recent Developments in Pseudo-Riemannian Geometry
, edited by
D. V.
Alekseevsky
and
H.
Baum
(
European Mathematical Society
,
Zurich
,
2008
), p.
113
.
41.
M.
Dunajski
,
J. Phys. A: Math. Theor.
42
,
404004
(
2009
).
42.
G.
Sparling
,
Philos. Trans. R. Soc. London, Ser. A
356
,
3041
(
1998
).
43.
T. N.
Bailey
and
M. G.
Eastwood
, “
Twistor results for integral transforms
,” in
Radon Transforms and Tomography
,
Contemporary Mathematics
, Vol.
278
, edited by
E. T.
Quinto
,
L.
Ehrenpreis
,
A.
Faridani
,
F.
Gonzalez
, and
E.
Grinberg
(
American Mathematical Society
,
Providence
,
2001
), p.
77
.
44.
L. J.
Mason
,
J. Reine Angew. Math.
597
,
105
(
2006
).
45.
N. J.
Hitchin
,
Commun. Math. Phys.
83
,
579
(
1982
).
46.
W. T.
Shaw
,
Complex Analysis with Mathematica
(
Cambridge University Press
,
Cambridge
,
2006
).
47.
S.
Chandrasekhar
and
P. C.
Kendall
,
Astrophys. J.
126
,
457
(
1957
).
48.
A. G.
Ramm
and
A. I.
Katsevich
,
The Radon Transform and Local Tomography
(
CRC Press
,
Florida
,
1996
).
49.
F.
Natterer
,
The Mathematics of Computerized Tomography
(
SIAM
,
Philadelphia
,
2001
).
50.
V.
Palamodov
,
Reconstructive Integral Geometry
(
Birkhäuser
,
Basel
,
2004
).
51.
V. P.
Palamadov
, “
Inversion formulas for the three-dimensional ray transform
,” in
Mathematical Methods in Tomography
,
Lecture Notes in Mathematics
, Vol.
1497
, edited by
G. T.
Herman
,
A. K.
Louis
, and
F.
Nattarer
(
Springer-Verlag
,
Berlin
,
1991
), p.
53
.
52.
I. M.
Gelfand
and
G. E.
Shilov
,
Generalized Functions: Properties and Operations
(
Academic Press
,
London
,
1964
), Vol.
1
.
53.
R. P.
Kanwal
,
Generalized Functions, Theory and Applications
(
Birkhäuser
,
Boston
,
2004
).
54.
V. I.
Semyanistyi
,
Sov. Math. Dokl.
2
,
59
(
1961
).
55.
V. I.
Semyanistyi
,
Trudy Sem. Vektor. Tenzor. Anal.
12
,
397
(
1963
).
56.
P.
Tooft
, “
The Radon transform, theory and implementation
,” Ph.D. thesis (
Technical University of Denmark
,
1996
).
58.
A.
Markoe
,
Analytic Tomography, Encyclopedia of Mathematics and Its Applications
(
Cambridge University Press
,
Cambridge
,
2006
), Vol.
106
.
59.
R.
Clack
and
M.
Defrise
,
J. Opt. Soc. Am. A
11
(
2
),
580
(
1994
)
60.
X.
Yang
, “
Geometry of cone-beam reconstruction
,” Ph.D. thesis (
Massachusetts Institute of Technology
,
2002
).
61.
K.
Taguchi
,
G. L.
Zeng
, and
G. T.
Gullberg
,
Phys. Med. Biol.
46
,
N127
(
2001
).
62.
X.-H.
Yan
and
R. M.
Leahy
,
IEEE Trans. Med. Imaging
10
(
3
),
462
(
1991
)
63.
G. N.
Watson
,
A Treatise on the Theory of Bessel Functions
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1944
).
64.
65.
W. T.
Shaw
, e-print arXiv:1005.4184v1 [physics.flu-dyn].
66.
P.
Baird
, An Introduction to Twistors, see http://www.math.jussieu.fr/~helein/encyclopaedia/baird-twistors.pdf.
68.
M. K.
Murray
, “
Monopoles
,” in
Geometric Analysis and Applications to Quantum Field Theory
,
Progress in Mathematics
, Vol.
205
, edited by
P.
Bouwknegt
,
S.
Wu
(
Birkhauser
,
Boston
,
2002
), p.
119
.
69.
D.
Chiou
,
O. J.
Ganor
,
Y. P.
Hong
,
B. S.
Kim
, and
I.
Mitra
,
Phys. Rev. D
71
,
125016
(
2005
).
70.
Z.
Yoshida
,
J. Math. Phys.
33
,
1252
(
1992
).
71.
G. F.
Torres del Castillo
,
J. Math. Phys.
35
,
499
(
1994
).
72.
M. N.
Rosenbluth
and
M. N.
Bussac
,
Nucl. Fusion
19
(
4
),
489
(
1979
)
73.
J. A.
Stratton
,
Electromagnetic Theory
(
John Wiley & Sons
,
New Jersey
,
2007
).
74.
A. A.
Neves
,
L. A.
Padilha
,
A.
Fontes
,
E.
Rodriguez
,
C. H. B.
Cruz
,
L. C.
Barbosa
, and
C. L.
Cesar
,
J. Phys. A
39
,
L293
(
2006
).
75.
V. V.
Dodonov
,
J. Phys. A: Math. Theor.
40
,
14329
(
2007
).
76.
P. J.
Cregg
and
P.
Svedlindh
,
J. Phys. A: Math. Theor.
40
,
14029
(
2007
).
77.
S.
Koumandos
,
Int. J. Math. Math. Sci.
2007
,
73750
.
78.
Bateman Manuscript Project: Higher Transcendental Functions
, edited by
A.
Erdelyi
(
McGraw-Hill
,
New York
,
1953
), Vol.
II
.
79.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
, 5th ed. (
Academic Press
,
Boston
,
1994
).
80.
G. B.
Folland
,
Fourier Analysis and Its Applications
(
Wadsworth & Brooks/Cole Advanced Books & Software
,
California
,
1992
).
81.
A. K.
Louis
, “
Developments of algorithms in computerized tomography
,” in
The Radon Transform, Inverse Problems, and Tomography
,
Proceedings of Symposia in Applied Mathematics
, Vol.
63
, edited by
G.
Olafsson
and
E. T.
Quinto
(
American Mathematical Society
,
Providence
,
2006
), p.
25
.
82.
J. E.
Marsden
and
M. J.
Hoffman
,
Basic Complex Analysis
(
W. H. Freeman and Company
,
New York
,
1999
).
83.
A.
Jeffrey
,
Applied Partial Differential Equations: An Introduction
(
Academic Press
,
Massachusetts
,
2003
).
You do not currently have access to this content.