We consider a system of five mass points r1, r2, r3, and r4 with masses m1 = m2 = m and

$m_3= m_4= \tilde{m}$
m3=m4=m̃ moving about a single massive body r0 with mass m0 at its center which is assumed to be the origin of the coordinates system. We assume that the central body r0 makes a generalized force on the four mass points and that such a force is generated by a Manev's type potential, i.e., characterized by a potential of the form
$\frac{1}{r}+\frac{\epsilon }{r^2}$
1r+εr2
, on the other hand is assumed that the attraction between the bodies r1, r2, r3, and r4 is of the Newtonian type. This model represents several cases, for instance, when the central body is a spheroid or a radiating source. First, we prove the existence of three different relative rhomboidal solutions, and its (central) configuration is as follows: (1) the rhombus is a square and all primaries have equal masses; (2) the rhombus is not a square but all masses are equal; and (3) the rhombus is not a square and the pairs of primaries have different masses. The first two cases present two parameters: ε, the radiation or the oblateness coefficient and m = μ the common mass of the primaries. In the third case, the only parameter to be considered is ε since it can be shown that in this case both m and
$\tilde{m}$
m̃
depend on ε. Second, we study the stability of these solutions. We determine the values of the parameters (ε, μ) for which the square solution is spectrally stable and we prove that the rhomboidal solutions are unstable in the Lyapunov sense in the other two situations.

1.
Albouy
,
A.
, “
The symmetric central configurations of four equal masses
,”
Contemp. Math.
198
,
131
135
(
1995
).
2.
Albouy
,
A.
,
Fu
,
Y.
, and
Sun
,
S.
, “
Symmetry of planar four-body convex central configurations
,”
Proc. R. Soc. London, Ser. A
464
(
2093
),
1355
1365
(
2008
).
3.
Arribas
,
M.
and
Elipe
,
A.
, “
Bifurcations and equilibria in the extended N-body ring problem
,”
Mech. Res. Commun.
31
(
1
),
1
18
(
2004
).
4.
Arribas
,
M.
,
Elipe
,
A.
, and
Palacios
,
M.
, “
Linear stability of ring systems with generalized central forces
,”
Astron. Astrophys.
489
,
819
824
(
2008
).
5.
Arribas
,
M.
,
Elipe
,
A.
,
Kalvouridis
,
T.
, and
Palacios
,
M.
, “
Homographic solutions in the planar n + 1 body problem with quasi-homogeneous potentials
,”
Celest. Mech. Dyn. Astron.
99
(
1
),
1
12
(
2007
).
6.
Corbera
,
M.
and
Llibre
,
J.
, “
Infinitely many periodic orbits for the rhomboidal five-body problem
,”
J. Math. Phys.
47
,
122701
(
2006
).
7.
Craig
,
S.
,
Diacu
,
F.
,
Lacomba
,
E.
, and
Perez
,
E.
, “
On the anisotropic Manev problem
,”
J. Math. Phys.
40
,
1359
(
1999
).
8.
Delgado
,
J.
,
Diacu
,
F.
,
Lacomba
,
E.
,
Mingarelli
,
A.
,
Mioc
,
V.
,
Perez
,
E.
, and
Stoica
,
C.
, “
The global flow of the Manev problem
,”
J. Math. Phys.
37
,
2748
(
1996
).
9.
Diacu
,
F.
, “
Near-collision dynamics for particle systems with quasihomogeneous potentials
,”
J. Differ. Equations
128
,
58
77
(
1996
).
10.
Diacu
,
F.
and
Santoprete
,
M.
, “
On the global dynamics of the anisotropic Manev problem
,”
Physica D
194
,
75
94
(
2004
).
11.
Elipe
,
A.
,
Arribas
,
M.
, and
Kalvouridis
,
T.
, “
Central configuration in the planar n + 1 body problem with generalized forces
,” in
Proceedings of the Eighth Conference on Celestial Mechanics (Spanish)
[
Monogr. Real Acad. Cienc. Exactas, Fis., Quim. Nat. Zaragoza
28
,
1
8
(
2006
)].
12.
Kulesza
,
M.
,
Marchesin
,
M.
, and
Vidal
,
C.
, “
Restricted rhomboidal five-body problem
,”
J. Phys. A
44
,
485204
(
2011
).
13.
Maxwell
,
J. C.
,
On the Stability of Motions of Saturn's Rings
(
MacMillan
,
Cambridge
,
1859
).
14.
Moeckel
,
R.
, “
Linear stability of relative equilibria with a domain mass
,”
J. Dyn. Differ. Equ.
6
(
1
),
37
51
(
1994
).
15.
Pendse
,
C. G.
,
Philos. Trans. R. Soc. London, Ser. A
CCXXXIV
,
145
(
1935
).
16.
Roberts
,
G.
,
Monograph Series in Mathematics
(
World Scientific
,
2000
), Vol.
6
, p.
303
.
17.
Santoprete
,
M.
, “
Symmetric periodic solutions of the anisotropic Manev problem
,”
J. Math. Phys.
43
,
3207
(
2002
).
18.
Scheeres
,
D. J.
and
Vinh
,
N. X.
,
Celest. Mech. Dyn. Astron.
51
,
83
(
1991
).
19.
Sturm
,
J.
, “
Mémoire sur la résolution des équations numériques
,”
Bull. Sci. Frussac
11
,
419
425
(
1829
).
20.
Szebehely
,
V.
,
Theory of Orbits
(
Academic Press
,
New York
,
1967
).
21.
Tisserand
,
F.
,
Traité de Méchanique Céleste
(
Gauthier-Villars
,
Paris
,
1889
).
22.
Vanberlei
,
R. J.
, “
Linear stability of ring systems around oblate central masses
,”
Adv. Space Res.
42
(
8
),
1370
1377
(
2008
).
23.
Vanberlei
,
R. J.
and
Kolemen
,
E.
, “
Linear stability of ring systems
,”
Astron. J.
133
(
2
),
656
664
(
2007
).
24.
Willerding
,
E.
, “
Theory of density waves in narrow planetary ring
,”
Astron. Astrophys.
161
(
2
),
403
407
(
1986
).
25.
Wintner
,
A.
,
The Analytical Foundations of Celestial Mechanics
(
Princeton University Press
,
Princeton, NJ
,
1941
).
You do not currently have access to this content.