In this paper, we will prove the rational non-integrability of a class of Hamiltonian systems associated with Painlevé IV equation by using Morales-Ramis theory and Kovacic's algorithm, which, to some extent, also implies the non-integrability of the fourth Painlevé equation itself.

1.
P.
Acosta-Humánez
and
D.
Blázquez-Sanz
, “
On Hamiltonian potentials with quartic polynomial normal variational equations
,”
Nonlinear Stud. Int. J.
16
(
3
),
299
314
(
2009
).
2.
A.
Baider
,
R. C.
Churchill
,
D. L.
Rod
, and
M. F.
Singer
, “
On the infinitesimal geometry of integrable systems
,”
Fields Inst. Commun.
7
,
5
56
(
1996
).
3.
D.
Blázquez-Sanz
and
S. A. Carrillo
Torres
, “
Group analysis of non-autonomous linear Hamiltonians through differential Galois theory
,”
Lobachevskii J. Math.
31
(
2
),
157
173
(
2010
).
4.
D.
Boucher
and
J. A.
Weil
, “
Application of the Morales-Ramis theorem to test the non-complete integrability of the planar three-body problem
,”
IRMA Lect. Math. Theor. Phys.
(
2002
).
5.
T.
Bountis
,
H.
Segur
, and
F.
Vivaldi
, “
Integrable Hamiltonian systems and the Painlevé property
,”
Phys. Rev. A
25
,
1257
1264
(
1982
).
6.
S.
Ferrer
and
F.
Mondejar
, “
On the non-integrability of the Stark-Zeeman Hamiltonian system
,”
Commun. Math. Phys.
208
,
55
63
(
1999
).
7.
S.
Fukutani
,
K.
Okamoto
, and
H.
Umemura
, “
Special polynomials and the Hirota bilinear relations of the second and the fourth Painlevé equations
,”
Nagoya Math. J.
159
,
179
200
(
2000
).
8.
A.
Goriely
,
Integrability and Non-Integrability of Dynamical Systems
(
World Scientific Publishing Co. Singapore
,
2001
).
9.
J. J.
Kovacic
, “
An algorithm for solving second order linear homogeneous differential equations
,”
J. Symb. Comput.
2
,
3
43
(
1986
).
10.
V. V.
Kozlov
,
Symmetries, Topology, and Resonances in Hamiltonian Mechanics
(
Springer-Verlag
,
Berlin
,
1995
).
11.
W. L.
Li
and
S. Y.
Shi
, “
Non-integrability of Hénon-Heiles system
,”
Celest. Mech. Dyn. Astron.
109
,
1
12
(
2011
).
12.
W. L.
Li
and
S. Y.
Shi
, “
Non-integrability of Generalized Yang-Mills Hamiltonian System
,”
Discrete Contin. Dyn. Syst.
33
,
1645
1655
(
2013
).
13.
A. J.
Maciejewski
,
M.
Przybylska
, and
J. A.
Weil
, “
Non-integrability of the generalized spring-pendulum problem
,”
J. Phys. A
37
,
2579
2597
(
2004
).
14.
A. J.
Maciejewski
and
M.
Przybylska
, “
Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential
,”
J. Math. Phys.
46
,
062901
(
2005
).
15.
J. J.
Morales-Ruiz
, “
Técnias algebraicas para el estedio de la integrabilidad de sistemas hamiltonianos
,” Ph.D. thesis (
University of Barcelona
,
1989
).
16.
J. J.
Morales-Ruiz
and
C.
Simó
, “
Picard-Vessiot theory and Ziglin's theory
,”
J. Differ. Equations
107
,
140
162
(
1994
).
17.
J. J.
Morales-Ruiz
,
Differential Galois theory and non-integrability of Hamiltonian systems
(
Birkhäuser Verlag
,
Basel
,
1999
).
18.
J. J.
Morales-Ruiz
, “
A remark about the Painlevé transcendents
,”
Séminaires. Congrés.
14
,
229
235
(
2006
).
19.
M.
Noumi
and
K.
Okamto
, “
Irreducibility of the second and the fourth Painlevé Equations
,”
Funkc. Ekvac.
40
,
139
163
(
1997
).
20.
M. F.
Singer
, “
Galois group of second and third order linear differential equations
,”
J. Symb. Comput.
11
,
1
27
(
1997
).
21.
A.
Sawicki
and
M.
Kus
, “
Classical nonintegrability of a quantum chaotic SU(3) Hamiltonian system
,”
Physica D
239
,
719
726
(
2010
).
22.
T.
Stoyanova
, “
Non-integrability of Painlevé VI equations in the Liouville sense
,”
Nonlinearity
22
,
2201
2230
(
2009
).
23.
H.
Umemura
and
H.
Watanabe
, “
Solutions of the second and fourth Painlevé Equations
,”
I. Funkc. Ekvac.
148
,
151
198
(
1997
).
24.
M.
Van der Put
and
M. F.
Singer
,
Galois Theory of Linear Differential Equations
volume 328 of Grundlehren der mathematischen Wissenshaften (
Springer
,
Heidelberg
,
2003
).
25.
T. J.
Waters
, “
Regular and irregular geodesics on spherical harmonic surfaces
,”
Physica D
241
,
543
552
(
2012
).
26.
S. L.
Ziglin
, “
Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, II
,”
Funct. Anal. Appl.
16
,
181
189
, 6–17 (
1983
).
You do not currently have access to this content.