In this paper, we will prove the rational non-integrability of a class of Hamiltonian systems associated with Painlevé IV equation by using Morales-Ramis theory and Kovacic's algorithm, which, to some extent, also implies the non-integrability of the fourth Painlevé equation itself.
REFERENCES
1.
P.
Acosta-Humánez
and D.
Blázquez-Sanz
, “On Hamiltonian potentials with quartic polynomial normal variational equations
,” Nonlinear Stud. Int. J.
16
(3
), 299
–314
(2009
).2.
A.
Baider
, R. C.
Churchill
, D. L.
Rod
, and M. F.
Singer
, “On the infinitesimal geometry of integrable systems
,” Fields Inst. Commun.
7
, 5
–56
(1996
).3.
D.
Blázquez-Sanz
and S. A. Carrillo
Torres
, “Group analysis of non-autonomous linear Hamiltonians through differential Galois theory
,” Lobachevskii J. Math.
31
(2
), 157
–173
(2010
).4.
D.
Boucher
and J. A.
Weil
, “Application of the Morales-Ramis theorem to test the non-complete integrability of the planar three-body problem
,” IRMA Lect. Math. Theor. Phys.
(2002
).5.
T.
Bountis
, H.
Segur
, and F.
Vivaldi
, “Integrable Hamiltonian systems and the Painlevé property
,” Phys. Rev. A
25
, 1257
–1264
(1982
).6.
S.
Ferrer
and F.
Mondejar
, “On the non-integrability of the Stark-Zeeman Hamiltonian system
,” Commun. Math. Phys.
208
, 55
–63
(1999
).7.
S.
Fukutani
, K.
Okamoto
, and H.
Umemura
, “Special polynomials and the Hirota bilinear relations of the second and the fourth Painlevé equations
,” Nagoya Math. J.
159
, 179
–200
(2000
).8.
A.
Goriely
, Integrability and Non-Integrability of Dynamical Systems
(World Scientific Publishing Co. Singapore
, 2001
).9.
J. J.
Kovacic
, “An algorithm for solving second order linear homogeneous differential equations
,” J. Symb. Comput.
2
, 3
–43
(1986
).10.
V. V.
Kozlov
, Symmetries, Topology, and Resonances in Hamiltonian Mechanics
(Springer-Verlag
, Berlin
, 1995
).11.
W. L.
Li
and S. Y.
Shi
, “Non-integrability of Hénon-Heiles system
,” Celest. Mech. Dyn. Astron.
109
, 1
–12
(2011
).12.
W. L.
Li
and S. Y.
Shi
, “Non-integrability of Generalized Yang-Mills Hamiltonian System
,” Discrete Contin. Dyn. Syst.
33
, 1645
–1655
(2013
).13.
A. J.
Maciejewski
, M.
Przybylska
, and J. A.
Weil
, “Non-integrability of the generalized spring-pendulum problem
,” J. Phys. A
37
, 2579
–2597
(2004
).14.
A. J.
Maciejewski
and M.
Przybylska
, “Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential
,” J. Math. Phys.
46
, 062901
(2005
).15.
J. J.
Morales-Ruiz
, “Técnias algebraicas para el estedio de la integrabilidad de sistemas hamiltonianos
,” Ph.D. thesis (University of Barcelona
, 1989
).16.
J. J.
Morales-Ruiz
and C.
Simó
, “Picard-Vessiot theory and Ziglin's theory
,” J. Differ. Equations
107
, 140
–162
(1994
).17.
J. J.
Morales-Ruiz
, Differential Galois theory and non-integrability of Hamiltonian systems
(Birkhäuser Verlag
, Basel
, 1999
).18.
J. J.
Morales-Ruiz
, “A remark about the Painlevé transcendents
,” Séminaires. Congrés.
14
, 229
–235
(2006
).19.
M.
Noumi
and K.
Okamto
, “Irreducibility of the second and the fourth Painlevé Equations
,” Funkc. Ekvac.
40
, 139
–163
(1997
).20.
M. F.
Singer
, “Galois group of second and third order linear differential equations
,” J. Symb. Comput.
11
, 1
–27
(1997
).21.
A.
Sawicki
and M.
Kus
, “Classical nonintegrability of a quantum chaotic SU(3) Hamiltonian system
,” Physica D
239
, 719
–726
(2010
).22.
T.
Stoyanova
, “Non-integrability of Painlevé VI equations in the Liouville sense
,” Nonlinearity
22
, 2201
–2230
(2009
).23.
H.
Umemura
and H.
Watanabe
, “Solutions of the second and fourth Painlevé Equations
,” I. Funkc. Ekvac.
148
, 151
–198
(1997
).24.
M.
Van der Put
and M. F.
Singer
, Galois Theory of Linear Differential Equations
volume 328 of Grundlehren der mathematischen Wissenshaften (Springer
, Heidelberg
, 2003
).25.
T. J.
Waters
, “Regular and irregular geodesics on spherical harmonic surfaces
,” Physica D
241
, 543
–552
(2012
).26.
S. L.
Ziglin
, “Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, II
,” Funct. Anal. Appl.
16
, 181
–189
, 6–17 (1983
).© 2013 AIP Publishing LLC.
2013
AIP Publishing LLC
You do not currently have access to this content.