All Killing symmetries in complex |$\mathcal {H}$|H-spaces with Λ in terms of the Plebański-Robinson-Finley coordinate system are found. All |$\mathcal {H}$|H-metrics with Λ admitting a null Killing vector are explicitly given. It is shown that the problem of non-null Killing vector reduces to looking for solution of the Boyer-Finley-Plebański (Toda field) equation.

1.
J. F.
Plebański
and
I.
Robinson
, “
Left-degenerate vacuum metrics
,”
Phys. Rev. Lett.
37
,
493
(
1976
).
2.
J. F.
Plebański
and
I.
Robinson
, “
The complex vacuum metric with minimally degenerated conformal curvature
,” in
Asymptotic Structure of Space-Time
, edited by
F. P.
Esposito
and
L.
Witten
(
Plenum Publishing Corporation
,
New York
,
1977
), pp.
361
406
.
3.
C. P.
Boyer
,
J. D.
Finley
 III
, and
J. F.
Plebański
, “
Complex general relativity, |$\mathcal {H}$|H and |$\mathcal {HH}$|HH spaces: A survey to one approach
,” in
General Relativity and Gravitation
,
Einstein Memorial
Vol.
2
, edited by
A.
Held
(
Plenum
,
New York
,
1980
), pp.
241
281
.
4.
J. D.
Finley
 III
and
J. F.
Plebański
,, “
The intrinsic spinorial structure of hyperheavens
,”
J. Math. Phys.
17
,
2207
(
1976
).
5.
K.
Rózga
, “
Real slices of complex space-time in general relativity
,”
Rep. Math. Phys.
11
,
197
(
1977
).
6.
J. F.
Plebański
and
K.
Rózga
, “
The optics of null strings
,”
J. Math. Phys.
25
,
1930
(
1984
).
7.
J. F.
Plebański
and
J. D.
Finley
, “
Killing vectors in nonexpanding HH spaces
,”
J. Math. Phys.
19
,
760
(
1978
).
8.
J. D.
Finley
 III
and
J. F.
Plebański
, “
The classification of all |$\mathcal {H}$|H spaces admitting a Killing vector
,”
J. Math. Phys.
20
,
1938
(
1979
).
9.
S. A.
Sonnleitner
and
J. D.
Finley
 III
, “
The form of Killing vectors in expanding |$\mathcal {HH}$|HH spaces
,”
J. Math. Phys.
23
(
1
),
116
(
1982
).
10.
E. T.
Newman
, “
Heaven and its properties
,”
Gen. Relativ. Gravit.
7
,
107
(
1976
).
11.
M.
Ko
,
M.
Ludvigsen
,
E. T.
Newman
, and
K. P.
Tod
, “
The theory of |$\mathcal {H}$|H-space
,”
Phys. Rep.
71
,
51
(
1981
).
12.
E. J.
Flaherty
,
Hermitian and Kählerian Geometry in Relativity
,
Lecture Notes in Physics
Vol.
46
(
Springer-Verlag
,
Berlin
,
1976
).
13.
J. F.
Plebański
, “
Some solutions of complex Einstein equations
,”
J. Math. Phys.
16
,
2395
(
1975
).
14.
R.
Penrose
, “
Nonlinear gravitons and curved twistor theory
,”
Gen. Relativ. Gravit.
7
,
31
(
1976
).
15.
R.
Penrose
and
R.
Ward
, “
Twistors for flat and curved space-time
,” in
General Relativity and Gravitation
, edited by
A.
Held
(
Plenum Press
,
New York
,
1980
), Vol.
2
, pp.
283
328
.
16.
L. J.
Mason
and
N. M. J.
Woodhouse
,
Integrability, Self-Duality and Twistor Theory
,
LMS Monographs New Series
Vol.
15
(
Oxford University Press
,
1996
).
17.
S.
Alexandrov
,
B.
Pioline
, and
S.
Vandoren
, “
Self-dual Einstein spaces, heavenly metrics and twistors
,”
J. Math. Phys.
51
,
073510
(
2010
).
18.
A.
Chudecki
and
M.
Przanowski
, “
From hyperheavenly spaces to Walker and Osserman spaces: I
,”
Class. Quantum Grav.
25
,
145010
(
2008
).
19.
A.
Chudecki
and
M.
Przanowski
, “
From hyperheavenly spaces to Walker and Osserman spaces: II
,”
Class. Quantum Grav.
25
,
235019
(
2008
).
20.
P. R.
Law
and
Y.
Matsushita
, “
Algebraically special, real alpha-geometries
,”
J. Geom. Phys.
61
,
2064
2080
(
2011
).
21.
A.
Chudecki
, “
Conformal Killing vectors in nonexpanding |$\mathcal {HH}$|HH-spaces with Λ
,”
Class. Quantum Grav.
27
,
205004
(
2010
).
22.
A.
Chudecki
, “
Homothetic Killing vectors in expanding |$\mathcal {HH}$|HH-spaces with Λ
,”
Int. J. Geom. Methods Mod. Phys.
10
(
1
),
1250077
(
2013
).
23.
A.
Chudecki
, “
Classification of the Killing vectors in nonexpanding |$\mathcal {HH}$|HH-spaces with Λ
,”
Class. Quantum Grav.
29
,
135010
(
2012
).
24.
J. F.
Plebański
and
S.
Hacyan
, “
Some properties of Killing spinors
,”
J. Math. Phys.
14
,
2204
(
1976
).
25.
M.
Przanowski
, “
Killing vector fields in self-dual Euclidian Einstein spaces with Λ ≠ 0
,”
J. Math. Phys.
32
,
1004
(
1991
).
26.
P.
Tod
, “
A note on Riemannian anti-self-dual Einstein metrics with symmetry
,” e-print arXiv:hep-th/0609071v1.
27.
M.
Högner
, “
Anti-self-dual fields and manifolds
,” Ph.D. thesis,
University of Cambridge
,
2012
.
28.
J. F.
Plebański
and
S.
Hacyan
, “
Null geodesic surfaces and Goldberg-Sachs theorem in complex Riemannian spaces
,”
J. Math. Phys.
16
,
2403
(
1975
).
29.
D.
Garfinkle
and
Q.
Tian
, “
Spacetimes with cosmological constant and a conformal Killing field have constant curvature
,”
Class. Quantum Grav.
4
,
137
(
1987
).
30.
R. A.
Gover
,
D. C.
Hill
, and
P.
Nurowski
, “
Sharp version of the Goldberg-Sachs theorem
,”
Ann. Mat. Pura Appl.
190
,
295
340
(
2011
).
31.
S.
Kobayashi
and
K.
Nomizu
,
Foundations of Differential Geometry
(
Interscience Publishers
,
New York
,
1963
).
32.
W.
Ślebodziński
,
Exterior Forms and their Applications
(
Polish Scientific Publishers
,
Warszawa
,
1970
).
33.
M.
Dunajski
and
P.
Tod
, “
Self-dual conformal gravity
,” e-print arXiv:1304.7772 [hep-th].
34.
A.
Chudecki
, “
Killing vectors in neutral Einstein spaces with Λ
,” (unpublished).
You do not currently have access to this content.