We study perturbations of the flat geometry of the noncommutative two-dimensional torus (with irrational θ). They are described by spectral triples , with the Dirac operator D, which is a differential operator with coefficients in the commutant of the (smooth) algebra Aθ of . We show, up to the second order in perturbation, that the ζ-function at 0 vanishes and so the Gauss-Bonnet theorem holds. We also calculate first two terms of the perturbative expansion of the corresponding local scalar curvature.
REFERENCES
1.
Bhuyain
,T. A.
and Marcolli
,M.
, “The Ricci flow on noncommutative two-tori
,” Lett. Math. Phys.
101
(2
), 173
–194
(2012
);e-print arXiv:1107.4788.
2.
Cohen
, P. B.
and Connes
, A.
, “Conformal geometry of the irrational rotation algebra
,” preprint MPI (92-93).3.
Connes
, A.
“C *-algèbres et géométrie différentielle
,” C. R. Acad. Sci. Paris Sér. I Math.
290
, 599
–604
(1980
).4.
5.
Connes
, A.
, “Gravity coupled with matter and foundation of non-commutative geometry
,” Commun. Math. Phys.
182
, 155
–176
(1996
).6.
Connes
, A.
and Marcolli
, M.
, Noncommutative geometry, quantum fields and motives
(Colloquium Publications/AMS
, 2008
), Vol. 55
.7.
Connes
, A.
and Moscovici
, H.
, “Modular curvature for noncommutative two-tori
,” e-print arXiv:1110.3500.8.
Connes
, A.
and Tretkoff
, P.
, “The Gauss-Bonnet theorem for the noncommutative two torus
,” e-print arXiv:0910.0188.9.
Dąbrowski
, L.
and Sitarz
, A.
, “Noncommutative circle bundles and new Dirac operators
,” e-print arXiv:1012.3055v2.10.
Dąbrowski
, L.
, Sitarz
, A.
, and Zucca
, A.
, “Noncommutative circle bundles over odd dimensional spaces
” (unpublished).11.
Essouabri
, D.
, Iochum
, B.
, Levy
, C.
, and Sitarz
, A.
, “Spectral action on noncommutative torus
,” J. Noncommut. Geom.
2
, 53
–123
(2008
).12.
Fathizadeh
, F.
and Khalkhali
, M.
, “The Gauss-Bonnet theorem for noncommutative two tori with a general conformal structure
,” e-print arXiv:1005.4947.13.
Fathizadeh
, F.
and Khalkhali
, M.
, “Scalar curvature for the noncommutative two torus
,” e-print arXiv:1110.3511.14.
Fathizadeh
, F.
and Khalkhali
, M.
, “Weyl's law and Connes’ trace theorem for noncommutative two tori
,” e-print arXiv:1111.1358.15.
Fathizadeh
, F.
and Wong
, M. W.
, “Noncommutative residues for pseudo-differential operators on the noncommutative two-torus
,” J. Pseudo-Differ. Oper. Appl.
2
(3
), 289
–302
(2011
).16.
Paschke
, M.
and Sitarz
, A.
, “On spin structures and Dirac operators on the noncommutative torus
,” Lett. Math. Phys.
77
(3
), 317
–327
(2006
).17.
Rosenberg
, J.
, “Noncommutative variations on Laplace equation
,” Anal. PDE
1
(1
), 95
–114
(2008
).18.
Savin
, A. Yu.
and Sternin
, B. Yu.
, “Noncommutative elliptic theory. Examples
,” Proceedings of the Steklov Institute of Mathematics
, Vol 271
(1
), 193
–211
(2010
).© 2013 American Institute of Physics.
2013
American Institute of Physics
You do not currently have access to this content.