To each three-component link in the 3-sphere we associate a generalized Gauss map from the 3-torus to the 2-sphere, and show that the pairwise linking numbers and Milnor triple linking number that classify the link up to link homotopy correspond to the Pontryagin invariants that classify its generalized Gauss map up to homotopy. We view this as a natural extension of the familiar situation for two-component links in 3-space, where the linking number is the degree of the classical Gauss map from the 2-torus to the 2-sphere. The generalized Gauss map, like its prototype, is geometrically natural in the sense that it is equivariant with respect to orientation-preserving isometries of the ambient space, thus positioning it for application to physical situations. When the pairwise linking numbers of a three-component link are all zero, we give an integral formula for the triple linking number analogous to the Gauss integral for the pairwise linking numbers. This new integral is also geometrically natural, like its prototype, in the sense that the integrand is invariant under orientation-preserving isometries of the ambient space. Versions of this integral have been applied by Komendarczyk in special cases to problems of higher order helicity and derivation of lower bounds for the energy of magnetic fields. We have set this entire paper in the 3-sphere because our generalized Gauss map is easiest to present here, but in a subsequent paper we will give the corresponding maps and integral formulas in Euclidean 3-space.

1.
J.
Milnor
, “
Link groups
,”
Ann. Math.
59
(
2
),
177
195
(
1954
).
2.
L.
Pontryagin
, “
A classification of mappings of the three-dimensional complex into the two-dimensional sphere
,”
Rec. Math. [Mat. Sb.] N. S.
9
(
51
),
331
363
(
1941
).
3.
D.
DeTurck
,
H.
Gluck
,
R.
Komendarczyk
,
P.
Melvin
,
C.
Shonkwiler
, and
D. S.
Vela-Vick
, “
Triple linking numbers, ambiguous Hopf invariants and integral formulas for three-component links
,”
Mat. Contemp.
34
,
251
283
(
2008
).
4.
J.
Milnor
, “
Isotopy of links. Algebraic geometry and topology
,” in
A symposium in honor of S. Lefschetz
(
Princeton University
,
Princeton, NJ
,
1957
), pp.
280
306
.
5.
B.
Mellor
and
P.
Melvin
, “
A geometric interpretation of Milnor's triple linking numbers
,”
Algebraic. Geom. Topol.
3
,
557
568
(
2003
).
6.
S. V.
Matveev
, “
Generalized surgeries of three-dimensional manifolds and representations of homology spheres
,”
Mat. Zametki
42
,
268
278
(
1987
).
7.
H.
Murakami
and
Y.
Nakanishi
, “
On a certain move generating link-homology
,”
Math. Ann.
284
,
75
89
(
1989
).
8.
H.
Hopf
, “
Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche
,”
Math. Ann.
104
(
1
),
637
665
(
1931
).
9.
J. W.
Milnor
,
Topology from the Differentiable Viewpoint
,
Princeton Landmarks in Mathematics
(
Princeton University
,
Princeton, NJ
,
1997
); revised reprint of the 1965 original).
10.
R.
Thom
, “
Quelques propriétés globales des variétés différentiables
,”
Comment. Math. Helv.
28
,
17
86
(
1954
).
11.
R. E.
Gompf
, “
Handlebody construction of Stein surfaces
,”
Ann. Math.
148
(
2
),
619
693
(
1998
).
12.
M.
Cencelj
,
D.
Repovš
, and
M. B.
Skopenkov
, “
Classification of framed links in 3-manifolds
,”
Proc. Indian Acad. Sci., Math. Sci.
117
,
301
306
(
2007
).
13.
D.
Auckly
and
L.
Kapitanski
, “
Analysis of S2-valued maps and Faddeev's model
,”
Commun. Math. Phys.
256
,
611
620
(
2005
).
14.
J. H. C.
Whitehead
, “
An expression of Hopf's invariant as an integral
,”
Proc. Natl. Acad. Sci. U.S.A.
33
,
117
123
(
1947
).
15.
G. B.
Folland
,
Introduction to Partial Differential Equations
, 2nd ed. (
Princeton University
,
Princeton, NJ
,
1995
).
16.
W. S.
Massey
, “
Higher order linking numbers
,” in
Conference on Algebraic Topology (Univ. of Illinois at Chicago Circle, Chicago, Ill., 1968)
(
University of Illinois at Chicago Circle
,
Chicago, Ill.
,
1969
), pp.
174
205
.
17.
A. J.
Casson
, “
Link cobordism and Milnor's invariant
,”
Bull. London Math. Soc.
7
,
39
40
(
1975
).
18.
V. G.
Turaev
, “
The Milnor invariants and Massey products
,”
Zap. Nauchn. Semin. LOMI
66
,
189
203
209
210
(
1976
).
19.
R.
Porter
, “
Milnor's
$\bar{\mu }$
μ¯
-invariants and Massey products
,”
Trans. Amer. Math. Soc.
257
,
39
71
(
1980
).
20.
R. A.
Fenn
,
Techniques of Geometric Topology
,
London Mathematical Society Lecture Note Series
, Vol.
57
(
Cambridge University Press
,
Cambridge
,
1983
).
21.
K. E.
Orr
, “
Homotopy invariants of links
,”
Invent. Math.
95
,
379
394
(
1989
).
22.
T. D.
Cochran
, “
Derivatives of links: Milnor's concordance invariants and Massey's products
,”
Mem. Am. Math. Soc.
84
, (
1990
).
23.
N.
Habegger
and
X.-S.
Lin
, “
The classification of links up to link-homotopy
,”
J. Am. Math. Soc.
3
,
389
419
(
1990
).
24.
C. F.
Gauss
, “
Integral formula for linking number
,” in
Zur Mathematischen Theorie der Electrodynamische Wirkungen (Collected Works)
, Vol.
5
(
Koniglichen Gesellschaft des Wissenschaften
,
Göttingen
,
1833
), p.
605
.
25.
D.
DeTurck
and
H.
Gluck
, “
Electrodynamics and the Gauss linking integral on the 3-sphere and in hyperbolic 3-space
,”
J. Math. Phys.
49
,
023504
(
2008
).
26.
G.
Kuperberg
, “
From the Mahler conjecture to Gauss linking integrals
,”
Geom. Funct. Anal.
18
,
870
892
(
2008
).
27.
G. P.
Scott
, “
Homotopy links
,”
Abh. Math. Semin. Univ. Hambg.
32
,
186
190
(
1968
).
28.
W. S.
Massey
and
D.
Rolfsen
, “
Homotopy classification of higher-dimensional links
,”
Indiana Univ. Math. J.
34
,
375
391
(
1985
).
29.
D.
DeTurck
and
H.
Gluck
, “
Linking integrals in the n-sphere
,”
Mat. Contemp.
34
,
239
249
(
2008
).
30.
C.
Shonkwiler
and
D. S.
Vela-Vick
, “
Higher-dimensional linking integrals
,”
Proc. Am. Math. Soc.
139
,
1511
1519
(
2011
).
31.
U.
Koschorke
, “
A generalization of Milnor's μ-invariants to higher-dimensional link maps
,”
Topology
36
,
301
324
(
1997
).
32.
L.
Woltjer
, “
A theorem on force-free magnetic fields
,”
Proc. Natl. Acad. Sci. U.S.A.
44
,
489
491
(
1958
).
33.
H. K.
Moffatt
, “
The degree of knottedness of tangled vortex lines
,”
J. Fluid Mech.
35
,
117
129
(
1969
).
34.
V. I.
Arnold
and
B. A.
Khesin
,
Topological Methods in Hydrodynamics
,
Applied Mathematical Sciences
, Vol.
125
(
Springer-Verlag
,
New York
,
1998
).
35.
J.
Cantarella
and
J.
Parsley
, “
A new cohomological formula for helicity in
$\mathbb {R}^{2k+1}$
R2k+1
reveals the effect of a diffeomorphism on helicity
,”
J. Geom. Phys.
60
(
9
),
1127
1155
(
2010
).
36.
R.
Komendarczyk
, “
The third order helicity of magnetic fields via link maps
,”
Commun. Math. Phys.
292
,
431
456
(
2009
).
37.
R.
Komendarczyk
, “
The third order helicity of magnetic fields via link maps. II
,”
J. Math. Phys.
51
,
122702
(
2010
).
38.
W. S.
Massey
, “
Some higher order cohomology operations
,” in
International Symposium on Algebraic Topology
(
Universidad Nacional Autónoma de México and UNESCO
,
Mexico City
,
1958
), pp.
145
154
.
39.
M. I.
Monastyrsky
and
V. S.
Retakh
, “
Topology of linked defects in condensed matter
,”
Commun. Math. Phys.
103
,
445
459
(
1986
).
40.
M. A.
Berger
, “
Third-order link integrals
,”
J. Phys. A
23
,
2787
2793
(
1990
).
41.
M. A.
Berger
, “
Third-order braid invariants
,”
J. Phys. A
24
,
4027
4036
(
1991
).
42.
E.
Guadagnini
,
M.
Martellini
, and
M.
Mintchev
, “
Wilson lines in Chern-Simons theory and link invariants
,”
Nucl. Phys. B
330
,
575
607
(
1990
).
43.
N. W.
Evans
and
M. A.
Berger
, “
A hierarchy of linking integrals
,” in
Topological Aspects of the Dynamics of Fluids and Plasmas (Santa Barbara, CA, 1991)
,
NATO Advanced Study Institute Series, Series E: Applied Sciences
, Vol.
218
(
Kluwer Academic
,
Dordrecht
,
1992
), pp.
237
248
.
44.
A.
Ruzmaikin
and
P.
Akhmetiev
, “
Topological invariants of magnetic fields, and the effect of reconnections
,”
Phys. Plasmas
1
,
331
336
(
1994
).
45.
P.
Akhmetiev
and
A.
Ruzmaikin
, “
A fourth-order topological invariant of magnetic or vortex lines
,”
J. Geom. Phys.
15
,
95
101
(
1995
).
46.
P.
Laurence
and
E.
Stredulinsky
, “
Asymptotic Massey products, induced currents and Borromean torus links
,”
J. Math. Phys.
41
,
3170
3191
(
2000
).
47.
L.
Leal
, “
Link invariants from classical Chern-Simons theory
,”
Phys. Rev. D
66
(
3
),
125007
(
2002
).
48.
G.
Hornig
and
C.
Mayer
, “
Towards a third-order topological invariant for magnetic fields
,”
J. Phys. A
35
,
3945
3959
(
2002
).
49.
T.
Rivière
, “
High-dimensional helicities and rigidity of linked foliations
,”
Asian J. Math.
6
,
505
533
(
2002
).
50.
B. A.
Khesin
, “
Geometry of higher helicities
,”
Mosc. Math. J.
3
,
989
1011
(
2003
).
51.
H. v.
Bodecker
and
G.
Hornig
, “
Link invariants of electromagnetic fields
,”
Phys. Rev. Lett.
92
,
030406
(
2004
).
52.
P. M.
Akhmetiev
, “
On a new integral formula for an invariant of 3-component oriented links
,”
J. Geom. Phys.
53
,
180
196
(
2005
).
53.
L.
Leal
and
J.
Pineda
, “
The topological theory of the Milnor invariant
$\overline{\mu }(1,2,3)$
μ¯(1,2,3)
,”
Mod. Phys. Lett. A
23
,
205
210
(
2008
).
54.
T.
Kohno
, “
Loop spaces of configuration spaces and finite type invariants
,” in
Invariants of Knots and 3-manifolds (Kyoto, 2001)
,
Geom. Topol. Monogr.
, Vol.
4
(
Geom. Topol. Publ.
,
Coventry
,
2002
), pp.
143
160
.
55.
P.
Cromwell
,
E.
Beltrami
, and
M.
Rampichini
, “
The Borromean rings
,”
Math. Intell.
20
,
53
62
(
1998
).
You do not currently have access to this content.