In this paper we analyze the classical limit of the Nelson model with cutoff, when both non-relativistic and relativistic particles number goes to infinity. We prove convergence of quantum observables to the solutions of classical equations, and find the evolution of quantum fluctuations around the classical solution. Furthermore, we analyze the convergence of transition amplitudes of normal ordered products of creation and annihilation operators between different types of initial states. In particular, the limit of normal ordered products between states with a fixed number of both relativistic and non-relativistic particles yields an unexpected quantum residue: instead of the product of classical solutions we obtain an average of the product of solutions corresponding to varying initial conditions.

1.
P.
Ehrenfest
,
Z. Phys.
45
,
455
(
1927
).
2.
K.
Hepp
,
Commun. Math. Phys.
35
,
265
(
1974
).
3.
J.
Ginibre
and
G.
Velo
,
Commun. Math. Phys.
66
,
37
(
1979
).
4.
J.
Ginibre
and
G.
Velo
,
Ann. Inst. Henri Poincare, Sect. A
33
,
363
(
1980
).
5.
J.
Ginibre
,
F.
Nironi
, and
G.
Velo
,
Ann. Henri Poincaré
7
,
21
(
2006
).
6.
I.
Rodnianski
and
B.
Schlein
,
Commun. Math. Phys.
291
,
31
(
2009
).
7.
L.
Chen
and
J. O.
Lee
,
J. Math. Phys.
52
,
052108
(
2011
).
8.
L.
Chen
,
J. O.
Lee
, and
B.
Schlein
,
J. Stat. Phys.
144
,
872
(
2011
).
9.
H.
Spohn
,
Rev. Mod. Phys.
52
,
569
(
1980
).
10.
L.
Erdös
and
H.-T.
Yau
,
Adv. Theor. Math. Phys.
5
,
1169
(
2001
).
11.
L.
Erdös
,
B.
Schlein
, and
H.-T.
Yau
,
Invent. Math.
167
,
515
(
2007
).
12.
P.
Pickl
,
Lett. Math. Phys.
97
,
151
(
2011
).
13.
E. P.
Gross
,
Ann. Phys.
19
,
219
(
1962
).
14.
E.
Nelson
,
J. Math. Phys.
5
,
1190
(
1964
).
15.
Z.
Ammari
,
Math. Phys., Anal. Geom.
3
,
217
(
2000
).
16.
C.
Gérard
,
Rev. Math. Phys.
14
,
1165
(
2002
).
17.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness
(
Academic/Harcourt Brace Jovanovich
,
New York
,
1975
).
18.
I.
Krasikov
,
East J. Approx.
11
,
257
(
2005
).
You do not currently have access to this content.