We consider the time-dependent Schrödinger equation in one spatial dimension with a time-dependent quadratic Hamiltonian and, under appropriate assumptions on the coefficient functions in the Hamiltonian, construct solutions that approach minimal uncertainty states for large times.

1.
G.
Hagedorn
, “
Semiclassical quantum mechanics III: The large order asymptotics and more general states
,”
Ann. Phys.
135
,
58
70
(
1981
).
2.
G.
Hagedorn
, “
Raising and lowering operators for semiclassical wave packets
,”
Ann. Phys.
269
,
77
104
(
1998
).
3.
P.
Caldirola
, “
Forze non conservative nella mechanica quantistica
,”
Il Nuovo Cimento
18
,
393
400
(
1941
).
4.
E.
Kanai
, “
On the quantization of dissipative systems
,”
Prog. Theor. Phys.
3
,
440
442
(
1948
).
5.
S.
Kim
, “
Squeezed states of the generalized minimum uncertainty state for the Caldirola–Kanai Hamiltonian
,”
J. Phys. A
36
,
12089
(
2003
).
6.
I.
Pedrosa
, “
Complete exact quantum states of the generalized time-dependent harmonic oscillator
,”
Mod. Phys. Lett. B
18
,
1267
1274
(
2004
).
7.
C.
Um
,
J.
Choi
,
K.
Yeon
,
S.
Zhang
, and
T.
George
, “
Exact quantum theory of a lengthening pendulum
,”
J. Korean Phys. Soc.
41
,
649
654
(
2002
).
8.
M.
Boas
,
Mathematical Methods in the Physical Sciences
, 3rd ed. (
Wiley
,
2006
).
9.
M.
Abramowitz
and
I.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs, Mathematical Tables
(
Dover
,
1964
).
10.
R.
Courant
and
D.
Hilbert
,
Methods of Mathematical Physics
,
Classics Library
Vol.
1
(
Wiley-VCH
,
Weinheim
,
1989
).
11.
E.
Hille
,
Ordinary Differential Equations in the Complex Domain
(
Dover
,
1997
).
You do not currently have access to this content.