We consider the time-dependent Schrödinger equation in one spatial dimension with a time-dependent quadratic Hamiltonian and, under appropriate assumptions on the coefficient functions in the Hamiltonian, construct solutions that approach minimal uncertainty states for large times.
REFERENCES
1.
G.
Hagedorn
, “Semiclassical quantum mechanics III: The large order asymptotics and more general states
,” Ann. Phys.
135
, 58
–70
(1981
).2.
G.
Hagedorn
, “Raising and lowering operators for semiclassical wave packets
,” Ann. Phys.
269
, 77
–104
(1998
).3.
P.
Caldirola
, “Forze non conservative nella mechanica quantistica
,” Il Nuovo Cimento
18
, 393
–400
(1941
).4.
E.
Kanai
, “On the quantization of dissipative systems
,” Prog. Theor. Phys.
3
, 440
–442
(1948
).5.
S.
Kim
, “Squeezed states of the generalized minimum uncertainty state for the Caldirola–Kanai Hamiltonian
,” J. Phys. A
36
, 12089
(2003
).6.
I.
Pedrosa
, “Complete exact quantum states of the generalized time-dependent harmonic oscillator
,” Mod. Phys. Lett. B
18
, 1267
–1274
(2004
).7.
C.
Um
, J.
Choi
, K.
Yeon
, S.
Zhang
, and T.
George
, “Exact quantum theory of a lengthening pendulum
,” J. Korean Phys. Soc.
41
, 649
–654
(2002
).8.
9.
M.
Abramowitz
and I.
Stegun
, Handbook of Mathematical Functions with Formulas, Graphs, Mathematical Tables
(Dover
, 1964
).10.
R.
Courant
and D.
Hilbert
, Methods of Mathematical Physics
, Classics Library
Vol. 1
(Wiley-VCH
, Weinheim
, 1989
).11.
© 2013 American Institute of Physics.
2013
American Institute of Physics
You do not currently have access to this content.