In this article, we use an electromagnetic gauge-free framework to establish the existence of small-data global solutions to the Maxwell-Born-Infeld (MBI) system on the Minkowski spacetime background in 1+3 dimensions. Because the nonlinearities in the system have a special null structure, we are also able to show that these solutions decay at least as fast as solutions to the linear Maxwell-Maxwell system. In addition, we show that on any Lorentzian manifold, the MBI system is hyperbolic in the interior of the field-strength regime in which its Lagrangian is real-valued.
REFERENCES
1.
L.
Andersson
and P.
Blue
, “Hidden symmetries and decay for the wave equation on the Kerr spacetime
,” e-print arXiv:0908.2265v2.2.
I.
Bialynicki-Birula
, “Nonlinear electrodynamics: Variations on a theme by Born and Infeld
,” Quantum Theory Part. Fields
, 31
–48
(1983
); special volume in honor of Jan Łopuszański, B. Jancewicz, and J. Lukierski, eds. (World Scientific, Singapore, 1983).3.
M.
Born
and L.
Infeld
, “Foundation of the new field theory
,” Proc. R. Soc. London, Ser. A
144
, 425
–451
(1934
).4.
P.
Blue
, “Decay of the Maxwell field on the Schwarzschild manifold
,” J. Hyperbolic Differ. Equ.
5
(4
), 807
–856
(2008
).5.
G.
Boillat
, “Nonlinear electrodynamics: Lagrangians and equations of motion
,” J. Math. Phys.
11
(3
), 941
–951
(1969
).6.
M.
Born
, “Modified field equations with a finite radius of the electron
,” Nature (London)
132
, 282
(1933
).7.
Y.
Brenier
, “Hydrodynamic structure of the augmented Born-Infeld equations
,” Arch. Ration. Mech. Anal.
172
(1
), 65
–91
(2004
).8.
Extensions of the Stability Theorem of the Minkowski Space in General Relativity
, edited by L.
Bieri
and N.
Zipser
(American Mathematical Society
, Providence, RI
, 2009
).9.
Y.
Choquet-Bruhat
and D.
Christodoulou
, “Elliptic systems in Hs, δ spaces on manifolds which are Euclidean at infinity
,” Acta Math.
146
(1-2
), 129
–150
(1981
).10.
R.
Courant
and D.
Hilbert
, Methods of Mathematical Physics
(Wiley Classics Library), Partial Differential Equations
(Wiley
, New York
, 1989
), Vol. II
(reprinted by Wiley-Interscience, 1962).11.
D.
Chae
and H.
Huh
, “Global existence for small initial data in the Born-Infeld equations
,” J. Math. Phys.
44
(12
), 6132
–6139
(2003
).12.
D.
Christodoulou
, “Global solutions of nonlinear hyperbolic equations for small initial data
,” Commun. Pure Appl. Math.
39
(2
), 267
–282
(1986
).13.
D.
Christodoulou
, The Action Principle and Partial Differential Equations
, Annals of Mathematics Studies
Vol. 146
(Princeton University
, Princeton, NJ
, 2000
).14.
D.
Christodoulou
, The Formation of Shocks in 3-Dimensional Fluids
, EMS Monographs in Mathematics (European Mathematical Society (EMS)
, Zürich
, 2007
).15.
D.
Christodoulou
, Mathematical Problems of General Relativity. I, Zürich Lectures in Advanced Mathematics (European Mathematical Society (EMS), Zürich, 2008
).16.
D.
Christodoulou
, The Formation of Black Holes in General Relativity
, EMS Monographs in Mathematics (European Mathematical Society (EMS)
, Zürich
, 2009
).17.
D.
Christodoulou
and S.
Klainerman
, “Asymptotic properties of linear field equations in Minkowski space
,” Commun. Pure Appl. Math.
43
(2
), 137
–199
(1990
).18.
D.
Christodoulou
and S.
Klainerman
, The Global Nonlinear Stability of the Minkowski Space
, Princeton Mathematical Series
Vol. 41
(Princeton University
, Princeton, NJ
, 1993
).19.
C. M.
Dafermos
, “Hyperbolic conservation laws in continuum physics
,” in Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences
], 3rd ed. (Springer-Verlag
, Berlin
, 2010
), Vol. 325.20.
M.
Dafermos
and G.
Holzegel
, “On the nonlinear stability of higher dimensional triaxial Bianchi-IX black holes
,” Adv. Theor. Math. Phys.
10
(4
), 503
–523
(2006
).21.
M.
Dafermos
and I.
Rodnianski
, “A proof of Price's law for the collapse of a self-gravitating scalar field
,” Invent. Math.
162
(2
), 381
–457
(2005
).22.
M.
Dafermos
and I.
Rodnianski
, “Lectures on black holes and linear waves
,” e-print arXiv:0811.0354v1.23.
M.
Dafermos
and I.
Rodnianski
, “The red-shift effect and radiation decay on black hole spacetimes
,” Commun. Pure Appl. Math.
62
(7
), 859
–919
(2009
).24.
K. O.
Friedrichs
, “Symmetric hyperbolic linear differential equations
,” Commun. Pure Appl. Math.
7
, 345
–392
(1954
).25.
G. W.
Gibbons
, “Aspects of Born-Infeld theory and string/M-theory
,” AIP Conf. Proc.
589
, 324
–350
(2001
).26.
G.
Holzegel
, “On the massive wave equation on slowly rotating Kerr-AdS spacetimes
,” Commun. Math. Phys.
294
(1
), 169
–197
(2010
).27.
L.
Hörmander
, Lectures on Nonlinear Hyperbolic Differential Equations
, Mathématiques & Applications
Vol. 26
(Springer-Verlag
, Berlin
, 1997
).28.
29.
F.
John
, “Lower bounds for the life span of solutions of nonlinear wave equations in three dimensions
,” Commun. Pure Appl. Math.
36
(1
), 1
–35
(1983
).30.
M. K.-H.
Kiessling
, “Electromagnetic field theory without divergence problems. I. The Born legacy
,” J. Stat. Phys.
116
(1–4
), 1057
–1122
(2004
).31.
M. K.-H.
Kiessling
, “Electromagnetic field theory without divergence problems. II. A least invasively quantized theory
,” J. Stat. Phys.
116
(1–4
), 1123
–1159
(2004
).32.
S.
Klainerman
, “Uniform decay estimates and the Lorentz invariance of the classical wave equation
,” Commun. Pure Appl. Math.
38
(3
), 321
–332
(1985
).33.
S.
Klainerman
, “The null condition and global existence to nonlinear wave equations
,” Nonlinear Systems of Partial Differential Equations in Applied Mathematics
, Part 1 (Santa Fe, NM, 1984), Lectures in Applied Mathematics Vol. 23 (American Mathematical Society
, Providence, RI
, 1986
), pp. 293
–326
.34.
S.
Klainerman
and F.
Nicolò
, The Evolution Problem in General Relativity
, Progress in Mathematical Physics
Vol. 25
(Birkhäuser
, Boston, MA
, 2003
).35.
S.
Klainerman
and I.
Rodnianski
, “On the formation of trapped surfaces
,” Acta. Math.
208
(2
), 211
–333
(2012
).36.
P. D.
Lax
, Hyperbolic Partial Differential Equations
, Courant Lecture Notes in Mathematics
Vol. 14
(New York University Courant Institute of Mathematical Sciences
, New York
, 2006
) (With an appendix by Cathleen S. Morawetz).37.
J.
Loizelet
, “Problèms globaux en relativité generalé
,” Ph.D. dissertation (Universitè Francois Rabelais
, Tours, France, 2008
), pp. 1
–83
.38.
J.
Loizelet
, “Solutions globales des équations d'Einstein-Maxwell
,” Ann. Fac. Sci. Toulouse Math.
18
(3
), 565
–610
(2009
).39.
H.
Lindblad
and I.
Rodnianski
, “Global existence for the Einstein vacuum equations in wave coordinates
,” Commun. Math. Phys.
256
(1
), 43
–110
(2005
).40.
H.
Lindblad
and I.
Rodnianski
, “The global stability of Minkowski space-time in harmonic gauge
,” Ann. Math.
171
(3
), 1401
–1477
(2010
).41.
A.
Majda
, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables
, Applied Mathematical Sciences
Vol. 53
(Springer-Verlag
, New York
, 1984
).42.
J. C.
Maxwell
, A Treatise on Electricity and Magnetism
, Vol. 1, Oxford Classic Texts in the Physical Sciences (Clarendon
, New York
, 1998
) (With prefaces by W. D. Niven and J. J. Thomson, Reprint 3rd ed. (1891)).43.
J. C.
Maxwell
, A Treatise on Electricity and Magnetism
, Vol. 2
, Oxford Classic Texts in the Physical Sciences
(Clarendon
, New York
, 1998
) (Reprint 3rd ed. (1891)).44.
C. S.
Morawetz
, “The limiting amplitude principle
,” Commun. Pure Appl. Math.
15
, 349
–361
(1962
).45.
P.
Nahin
, Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age
(The Johns Hopkins University
, Baltimore
, 2002
).46.
E.
Noether
, “Invariant variation problems
,” Transport Theory Stat. Phys.
1
(3
), 186
–207
(1971
)E.
Noether
, [Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II
1918
, 235
–257
] (in German).47.
W.
Neves
and D.
Serre
, “Ill-posedness of the Cauchy problem for totally degenerate system of conservation laws
,” Electron. J. Differ. Equations
2005
(124
), 25
.48.
J.
Plebaǹski
, Lecture Notes on Nonlinear Electrodynamics (NORDITA, 1970
).49.
I.
Rodnianski
and J.
Speck
, “The Nonlinear Future Stability of the FLRW Family of Solutions to the Irrotational Euler-Einstein System with a Positive Cosmological Constant
,” e-print arXiv:0911.5501.50.
D.
Serre
, Systems of Conservation Laws. 1: Hyperbolicity, Entropies, Shock Waves
(Cambridge University Press
, Cambridge, England
, 1999
) (translated by I. N. Sneddon, 1996).51.
D.
Serre
, “Hyperbolicity of the nonlinear models of Maxwell's equations
,” Arch. Ration. Mech. Anal.
172
(3
), 309
–331
(2004
).52.
T. C.
Sideris
, “The null condition and global existence of nonlinear elastic waves
,” Invent. Math.
123
(2
), 323
–342
(1996
).53.
C. D.
Sogge
, Lectures on Nonlinear Wave Equations
, Monographs in Analysis
Vol. II
(International Press
, Boston, MA
, 1995
).54.
J.
Speck
, “The nonlinear future stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant
,” Selecta Math., New Ser.
1
–83
(2012
).55.
J.
Speck
, “On the questions of local and global well-posedness for the hyperbolic pdes occurring in some relativistic theories of gravity and electromagnetism
,” Ph.D. dissertation (Rutgers University
, Piscataway, NJ, 2008
), pp. 1–144
.56.
J.
Speck
, “The non-relativistic limit of the Euler-Nordström system with cosmological constant
,” Rev. Math. Phys.
21
(7
), 821
–876
(2009
).57.
J.
Speck
, “Well-posedness for the Euler-Nordström system with cosmological constant
,” J. Hyperbolic Differ. Eq.
6
(2
), 313
–358
(2009
).58.
J.
Speck
, “The global stability of the Minkowski spacetime solution to the Einstein-nonlinear electromagnetic system in wave coordinates
,” e-print arXiv:1009.6038.59.
J.
Shatah
and M.
Struwe
, Geometric Wave Equations
, Courant Lecture Notes in Mathematics
Vol. 2
(New York University Courant Institute of Mathematical Sciences
, New York
, 1998
).60.
J.
Speck
and R. M.
Strain
, “Hilbert expansion from the Boltzmann equation to relativistic fluids
,” Commun. Math. Phys.
304
(1
), 229
–280
(2011
).61.
M. E.
Taylor
, Partial Differential Equations. III
, Applied Mathematical Sciences
Vol. 117
(Springer-Verlag
, New York
, 1997
) (corrected reprint, 1996, Nonlinear Equations).62.
63.
N.
Zipser
, “The global nonlinear stability of the trivial solution of the Einstein-Maxwell equations
,” Ph.D. dissertation (Harvard University
, Cambridge, MA, 2000
).© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.