In this article, we use an electromagnetic gauge-free framework to establish the existence of small-data global solutions to the Maxwell-Born-Infeld (MBI) system on the Minkowski spacetime background in 1+3 dimensions. Because the nonlinearities in the system have a special null structure, we are also able to show that these solutions decay at least as fast as solutions to the linear Maxwell-Maxwell system. In addition, we show that on any Lorentzian manifold, the MBI system is hyperbolic in the interior of the field-strength regime in which its Lagrangian is real-valued.

1.
L.
Andersson
and
P.
Blue
, “
Hidden symmetries and decay for the wave equation on the Kerr spacetime
,” e-print arXiv:0908.2265v2.
2.
I.
Bialynicki-Birula
, “
Nonlinear electrodynamics: Variations on a theme by Born and Infeld
,”
Quantum Theory Part. Fields
,
31
48
(
1983
); special volume in honor of Jan Łopuszański, B. Jancewicz, and J. Lukierski, eds. (World Scientific, Singapore, 1983).
3.
M.
Born
and
L.
Infeld
, “
Foundation of the new field theory
,”
Proc. R. Soc. London, Ser. A
144
,
425
451
(
1934
).
4.
P.
Blue
, “
Decay of the Maxwell field on the Schwarzschild manifold
,”
J. Hyperbolic Differ. Equ.
5
(
4
),
807
856
(
2008
).
5.
G.
Boillat
, “
Nonlinear electrodynamics: Lagrangians and equations of motion
,”
J. Math. Phys.
11
(
3
),
941
951
(
1969
).
6.
M.
Born
, “
Modified field equations with a finite radius of the electron
,”
Nature (London)
132
,
282
(
1933
).
7.
Y.
Brenier
, “
Hydrodynamic structure of the augmented Born-Infeld equations
,”
Arch. Ration. Mech. Anal.
172
(
1
),
65
91
(
2004
).
8.
Extensions of the Stability Theorem of the Minkowski Space in General Relativity
, edited by
L.
Bieri
and
N.
Zipser
(
American Mathematical Society
,
Providence, RI
,
2009
).
9.
Y.
Choquet-Bruhat
and
D.
Christodoulou
, “
Elliptic systems in Hs, δ spaces on manifolds which are Euclidean at infinity
,”
Acta Math.
146
(
1-2
),
129
150
(
1981
).
10.
R.
Courant
and
D.
Hilbert
,
Methods of Mathematical Physics
(Wiley Classics Library), Partial Differential Equations
(
Wiley
,
New York
,
1989
), Vol.
II
(reprinted by Wiley-Interscience, 1962).
11.
D.
Chae
and
H.
Huh
, “
Global existence for small initial data in the Born-Infeld equations
,”
J. Math. Phys.
44
(
12
),
6132
6139
(
2003
).
12.
D.
Christodoulou
, “
Global solutions of nonlinear hyperbolic equations for small initial data
,”
Commun. Pure Appl. Math.
39
(
2
),
267
282
(
1986
).
13.
D.
Christodoulou
,
The Action Principle and Partial Differential Equations
,
Annals of Mathematics Studies
Vol.
146
(
Princeton University
,
Princeton, NJ
,
2000
).
14.
D.
Christodoulou
,
The Formation of Shocks in 3-Dimensional Fluids
, EMS Monographs in Mathematics (
European Mathematical Society (EMS)
,
Zürich
,
2007
).
15.
D.
Christodoulou
, Mathematical Problems of General Relativity. I, Zürich Lectures in Advanced Mathematics (European Mathematical Society (EMS), Zürich,
2008
).
16.
D.
Christodoulou
,
The Formation of Black Holes in General Relativity
, EMS Monographs in Mathematics (
European Mathematical Society (EMS)
,
Zürich
,
2009
).
17.
D.
Christodoulou
and
S.
Klainerman
, “
Asymptotic properties of linear field equations in Minkowski space
,”
Commun. Pure Appl. Math.
43
(
2
),
137
199
(
1990
).
18.
D.
Christodoulou
and
S.
Klainerman
,
The Global Nonlinear Stability of the Minkowski Space
,
Princeton Mathematical Series
Vol.
41
(
Princeton University
,
Princeton, NJ
,
1993
).
19.
C. M.
Dafermos
, “
Hyperbolic conservation laws in continuum physics
,” in
Grundlehren der Mathematischen Wissenschaften
[
Fundamental Principles of Mathematical Sciences
], 3rd ed. (
Springer-Verlag
,
Berlin
,
2010
), Vol. 325.
20.
M.
Dafermos
and
G.
Holzegel
, “
On the nonlinear stability of higher dimensional triaxial Bianchi-IX black holes
,”
Adv. Theor. Math. Phys.
10
(
4
),
503
523
(
2006
).
21.
M.
Dafermos
and
I.
Rodnianski
, “
A proof of Price's law for the collapse of a self-gravitating scalar field
,”
Invent. Math.
162
(
2
),
381
457
(
2005
).
22.
M.
Dafermos
and
I.
Rodnianski
, “
Lectures on black holes and linear waves
,” e-print arXiv:0811.0354v1.
23.
M.
Dafermos
and
I.
Rodnianski
, “
The red-shift effect and radiation decay on black hole spacetimes
,”
Commun. Pure Appl. Math.
62
(
7
),
859
919
(
2009
).
24.
K. O.
Friedrichs
, “
Symmetric hyperbolic linear differential equations
,”
Commun. Pure Appl. Math.
7
,
345
392
(
1954
).
25.
G. W.
Gibbons
, “
Aspects of Born-Infeld theory and string/M-theory
,”
AIP Conf. Proc.
589
,
324
350
(
2001
).
26.
G.
Holzegel
, “
On the massive wave equation on slowly rotating Kerr-AdS spacetimes
,”
Commun. Math. Phys.
294
(
1
),
169
197
(
2010
).
27.
L.
Hörmander
,
Lectures on Nonlinear Hyperbolic Differential Equations
,
Mathématiques & Applications
Vol.
26
(
Springer-Verlag
,
Berlin
,
1997
).
28.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York
,
1999
).
29.
F.
John
, “
Lower bounds for the life span of solutions of nonlinear wave equations in three dimensions
,”
Commun. Pure Appl. Math.
36
(
1
),
1
35
(
1983
).
30.
M. K.-H.
Kiessling
, “
Electromagnetic field theory without divergence problems. I. The Born legacy
,”
J. Stat. Phys.
116
(
1–4
),
1057
1122
(
2004
).
31.
M. K.-H.
Kiessling
, “
Electromagnetic field theory without divergence problems. II. A least invasively quantized theory
,”
J. Stat. Phys.
116
(
1–4
),
1123
1159
(
2004
).
32.
S.
Klainerman
, “
Uniform decay estimates and the Lorentz invariance of the classical wave equation
,”
Commun. Pure Appl. Math.
38
(
3
),
321
332
(
1985
).
33.
S.
Klainerman
, “
The null condition and global existence to nonlinear wave equations
,”
Nonlinear Systems of Partial Differential Equations in Applied Mathematics
, Part 1 (Santa Fe, NM, 1984), Lectures in Applied Mathematics Vol. 23 (
American Mathematical Society
,
Providence, RI
,
1986
), pp.
293
326
.
34.
S.
Klainerman
and
F.
Nicolò
,
The Evolution Problem in General Relativity
,
Progress in Mathematical Physics
Vol.
25
(
Birkhäuser
,
Boston, MA
,
2003
).
35.
S.
Klainerman
and
I.
Rodnianski
, “
On the formation of trapped surfaces
,”
Acta. Math.
208
(
2
),
211
333
(
2012
).
36.
P. D.
Lax
,
Hyperbolic Partial Differential Equations
,
Courant Lecture Notes in Mathematics
Vol.
14
(
New York University Courant Institute of Mathematical Sciences
,
New York
,
2006
) (With an appendix by Cathleen S. Morawetz).
37.
J.
Loizelet
, “
Problèms globaux en relativité generalé
,” Ph.D. dissertation (
Universitè Francois Rabelais
, Tours, France,
2008
), pp.
1
83
.
38.
J.
Loizelet
, “
Solutions globales des équations d'Einstein-Maxwell
,”
Ann. Fac. Sci. Toulouse Math.
18
(
3
),
565
610
(
2009
).
39.
H.
Lindblad
and
I.
Rodnianski
, “
Global existence for the Einstein vacuum equations in wave coordinates
,”
Commun. Math. Phys.
256
(
1
),
43
110
(
2005
).
40.
H.
Lindblad
and
I.
Rodnianski
, “
The global stability of Minkowski space-time in harmonic gauge
,”
Ann. Math.
171
(
3
),
1401
1477
(
2010
).
41.
A.
Majda
,
Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables
,
Applied Mathematical Sciences
Vol.
53
(
Springer-Verlag
,
New York
,
1984
).
42.
J. C.
Maxwell
,
A Treatise on Electricity and Magnetism
, Vol. 1, Oxford Classic Texts in the Physical Sciences (
Clarendon
,
New York
,
1998
) (With prefaces by W. D. Niven and J. J. Thomson, Reprint 3rd ed. (1891)).
43.
J. C.
Maxwell
,
A Treatise on Electricity and Magnetism
, Vol.
2
,
Oxford Classic Texts in the Physical Sciences
(
Clarendon
,
New York
,
1998
) (Reprint 3rd ed. (1891)).
44.
C. S.
Morawetz
, “
The limiting amplitude principle
,”
Commun. Pure Appl. Math.
15
,
349
361
(
1962
).
45.
P.
Nahin
,
Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age
(
The Johns Hopkins University
,
Baltimore
,
2002
).
46.
E.
Noether
, “
Invariant variation problems
,”
Transport Theory Stat. Phys.
1
(
3
),
186
207
(
1971
)
E.
Noether
, [
Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II
1918
,
235
257
] (in German).
47.
W.
Neves
and
D.
Serre
, “
Ill-posedness of the Cauchy problem for totally degenerate system of conservation laws
,”
Electron. J. Differ. Equations
2005
(
124
),
25
.
48.
J.
Plebaǹski
, Lecture Notes on Nonlinear Electrodynamics (NORDITA,
1970
).
49.
I.
Rodnianski
and
J.
Speck
, “
The Nonlinear Future Stability of the FLRW Family of Solutions to the Irrotational Euler-Einstein System with a Positive Cosmological Constant
,” e-print arXiv:0911.5501.
50.
D.
Serre
,
Systems of Conservation Laws. 1: Hyperbolicity, Entropies, Shock Waves
(
Cambridge University Press
,
Cambridge, England
,
1999
) (translated by I. N. Sneddon, 1996).
51.
D.
Serre
, “
Hyperbolicity of the nonlinear models of Maxwell's equations
,”
Arch. Ration. Mech. Anal.
172
(
3
),
309
331
(
2004
).
52.
T. C.
Sideris
, “
The null condition and global existence of nonlinear elastic waves
,”
Invent. Math.
123
(
2
),
323
342
(
1996
).
53.
C. D.
Sogge
,
Lectures on Nonlinear Wave Equations
,
Monographs in Analysis
Vol.
II
(
International Press
,
Boston, MA
,
1995
).
54.
J.
Speck
, “
The nonlinear future stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant
,”
Selecta Math., New Ser.
1
83
(
2012
).
55.
J.
Speck
, “
On the questions of local and global well-posedness for the hyperbolic pdes occurring in some relativistic theories of gravity and electromagnetism
,” Ph.D. dissertation (
Rutgers University
, Piscataway, NJ,
2008
), pp.
1–144
.
56.
J.
Speck
, “
The non-relativistic limit of the Euler-Nordström system with cosmological constant
,”
Rev. Math. Phys.
21
(
7
),
821
876
(
2009
).
57.
J.
Speck
, “
Well-posedness for the Euler-Nordström system with cosmological constant
,”
J. Hyperbolic Differ. Eq.
6
(
2
),
313
358
(
2009
).
58.
J.
Speck
, “
The global stability of the Minkowski spacetime solution to the Einstein-nonlinear electromagnetic system in wave coordinates
,” e-print arXiv:1009.6038.
59.
J.
Shatah
and
M.
Struwe
,
Geometric Wave Equations
,
Courant Lecture Notes in Mathematics
Vol.
2
(
New York University Courant Institute of Mathematical Sciences
,
New York
,
1998
).
60.
J.
Speck
and
R. M.
Strain
, “
Hilbert expansion from the Boltzmann equation to relativistic fluids
,”
Commun. Math. Phys.
304
(
1
),
229
280
(
2011
).
61.
M. E.
Taylor
,
Partial Differential Equations. III
,
Applied Mathematical Sciences
Vol.
117
(
Springer-Verlag
,
New York
,
1997
) (corrected reprint, 1996, Nonlinear Equations).
62.
R. M.
Wald
,
General Relativity
(
University of Chicago
,
Chicago, IL
,
1984
).
63.
N.
Zipser
, “
The global nonlinear stability of the trivial solution of the Einstein-Maxwell equations
,” Ph.D. dissertation (
Harvard University
, Cambridge, MA,
2000
).
You do not currently have access to this content.