We prove an integrability criterion of order 3 for a homogeneous potential of degree −1 in the plane. Still, this criterion depends on some integer and it is impossible to apply it directly except for families of potentials whose eigenvalues are bounded. To address this issue, we use holonomic and asymptotic computations with error control of this criterion and apply it to the potential of the form V(r, θ) = r−1h(exp (iθ)) with |$h\in \mathbb {C}[z],\;\deg h \le 3$|hC[z],degh3. We then find all meromorphically integrable potentials of this form.

1.
J.
Morales-Ruiz
and
J.
Ramis
, “
Galoisian obstructions to integrability of hamiltonian systems
,”
Methods Appl. Anal.
8
,
33
96
(
2001
).
2.
H.
Yoshida
, “
A criterion for the non-existence of an additional integral in Hamiltonian systems with a homogeneous potential
,”
Phys. D: Nonlinear Phenom.
29
,
128
142
(
1987
).
3.
J.
Morales-Ruiz
,
J.
Ramis
, and
C.
Simo
, “
Integrability of Hamiltonian systems and differential Galois groups of higher variational equations
,”
Ann. Sci. Ec. Normale Supér.
40
,
845
884
(
2007
).
4.
J.
Morales-Ruiz
and
J.
Ramis
, “
Galoisian obstructions to integrability of hamiltonian systems ii
,”
Methods Appl. Anal.
8
,
97
112
(
2001
).
5.
T.
Combot
, “
Generic classification of homogeneous potentials of degree −1 in the plane
,” e-print arXiv:1110.6130.
6.
T.
Kimura
, “
On Riemann's equations which are solvable by quadratures
,”
Funkc. Ekvac.
12
,
269
281
(
1970
).
7.
J.
Hietarinta
, “
A search for integrable two-dimensional Hamiltonian systems with polynomial potential
,”
Phys. Lett. A
96
,
273
278
(
1983
).
8.
A.
Maciejewski
and
M.
Przybylska
, “
Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential
,”
J. Math. Phys.
46
,
062901
(
2005
).
9.
A.
Maciejewski
and
M.
Przybylska
, “
All meromorphically integrable 2D Hamiltonian systems with homogeneous potential of degree 3
,”
Phys. Lett. A
327
,
461
473
(
2004
).
10.
R.
Martínez
and
C.
Simó
, “
Non-integrability of hamiltonian systems through high order variational equations: Summary of results and examples
,”
Regular Chaotic Dyn.
14
(
3
),
323
348
(
2009
).
11.
J.
Morales-Ruiz
and
S.
Simon
, “
On the meromorphic non-integrability of some N-body problems
,”
Discrete Contin. Dyn. Syst.
24
,
1225
1273
(
2009
).
12.
C.
Koutschan
, “
Advanced applications of the holonomic systems approach
,” Ph.D. dissertation (
RISC, Johannes Kepler University
, Linz, Austria,
2009
).
13.
C.
Koutschan
, “
HolonomicFunctions (User's Guide)
,” Technical Report 10-01, RISC Report Series (
Johannes Kepler University
, Linz,
2010
), see http://www.risc.jku.at/research/combinat/HolonomicFunctions/.
14.
T.
Combot
, “
Integrability conditions at order 2 for homogeneous potentials of degree −1
,” e-print arXiv:1109.5686.
15.
A.
Aparicio-Monforte
and
J.
Weil
, “
A reduction method for higher order variational equations of Hamiltonian systems
,” in
Symmetries and Related Topics in Differential and Difference Equations: Jairo Charris Seminar 2009, Escuela de Matematicas, Universidad Sergio Arboleda, Bogotá, Colombia
,
Contemporary Mathematics Vol. 549
(
American Mathematical Society
,
2011
).
16.
D.
Zeilberger
, “
A holonomic systems approach to special functions identities
,”
J. Comput. Appl. Math.
32
,
321
368
(
1990
).
17.
B.
Buchberger
, “
Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal
,” Ph.D. dissertation (
University of Innsbruck
, Innsbruck, Austria,
1965
).
18.
C.
Koutschan
, “
A fast approach to creative telescoping
,”
Math. Comput. Sci.
4
,
259
266
(
2010
).
19.
J.
Wimp
and
D.
Zeilberger
, “
Resurrecting the asymptotics of linear recurrences
,”
J. Math. Anal. Appl.
111
,
162
176
(
1985
).
20.
G. E.
Collins
, “
Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition
,”
Lect. Notes Comput. Sci.
33
,
134
183
(
1975
).
You do not currently have access to this content.