A new dynamical system interpretable as a discrete-time many-body problem is identified, and it is shown how its initial-value problem can be solved by purely algebraic operations.

1.
M. A.
Olshanetsky
and
A. M.
Perelomov
, “
Explicit solution of the Calogero model in the classical case and geodetic flows on symmetric spaces of zero curvature
,”
Lett. Nuovo Cimento
16
,
333
339
(
1976
).
2.
F.
Calogero
,
Classical Many-Body Problems Amenable to Exact Treatments
,
Springer Lecture Notes in Physics Monographs
Vol.
m66
(
Springer
,
Berlin
,
2001
).
3.
F.
Calogero
,
Isochronous Systems
(
Oxford University Press
,
Oxford
,
2008
).
4.
A. P.
Veselov
, “
Integrable maps
,”
Russ. Math. Surveys
46
(
5
),
1
51
(
1991
).
5.
Symmetries and Integrability of Difference Equations
,
London Mathematical Society Lecture Notes Series
Vol.
255
, edited by
P.
Clarkson
and
F.
Nijhoff
(
Cambridge University Press
,
Cambridge
,
1999
).
6.
Yu. B.
Suris
,
The Problem of Integrable Discretization: Hamiltonian Approach
,
Progress in Mathematics
Vol.
219
(
Birkhauser
,
Basel
,
2003
).
7.
O.
Ragnisco
, “
Discrete integrable systems
,” in
Encyclopedia of Mathematical Physics
, (
Elsevier
,
Oxford
,
2006
), Vol.
3
, pp.
59
65
.
8.
A. I.
Bobenko
and
Y. B.
Suris
,
Discrete Differential Geometry. Integrable Structure
,
Graduate Studies in Mathematics
Vol.
98
(
American Mathematical Society
,
2008
).
9.
F.
Calogero
, “
Discrete-time goldfishing
,”
SIGMA
7
, 082,
35
pages (
2011
).
10.
F.
Calogero
, “
On a technique to identify solvable discrete-time many-body problems
,”
Theor. Math. Phys.
(in press).
11.
F. W.
Nijhoff
,
O.
Ragnisco
, and
V. B.
Kuznetsov
, “
Integrable time-discretization of the Ruijsenaars-Schneider model
,”
Commun. Math. Phys.
176
,
681
700
(
1996
).
12.
F. W.
Nijhoff
and
G. D.
Pang
, “
Discrete-time Calogero-Moser model and lattice KP equations
,”
Theor. Math. Phys.
172
,
1052
1072
(
2012
),
and also in
Symmetries and Integrability of Difference Equations
,
CRM Lecture Notes and Proceedings Series
, Vol.
9
, edited by
D.
Levi
,
L.
Vinet
, and
P.
Winternitz
(
AMS
,
Montréal
,
1996
), pp.
253
264
.
13.
Y. B.
Suris
, “
Time discretization of F. Calogero's ‘goldfish’ system
,”
J. Nonlinear Math. Phys.
12
,
Suppl. 1
,
633
647
(
2005
).
14.
S.
Odake
and
R.
Sasaki
, “
Discrete quantum mechanics
,”
J. Phys. A: Math. Theor.
44
,
353001
(
2011
).
You do not currently have access to this content.