Within the framework of warped convolutions we deform the massless free scalar field. The deformation is performed by using the generators of the special conformal transformations. The investigation shows that the deformed field turns out to be wedge-local. Furthermore, it is shown that the spacetime induced by the deformation with the special conformal operators is nonconstant noncommutative. The noncommutativity is obtained by calculating the deformed commutator of the coordinates.

1.
P.
Aschieri
,
M.
Dimitrijević
,
P.
Kulish
,
F.
Lizzi
, and
J.
Wess
,
Noncommutative Spacetimes: Symmetries in Noncommutative Geometry and Field Theory
, (
Springer
,
2009
).
2.
S.
Alazzawi
, “
Deformations of fermionic quantum field theories and integrable models
,”
Lett. Math. Phys.
(to appear);
e-print arXiv:1203.2058v1 [math-ph].
3.
E.
Akofor
,
A. P.
Balachandran
,
S. G.
Jo
, and
A.
Joseph
, “
Quantum fields on the Groenwald-Moyal plane: C, P, T and CPT
,”
J. High Energy Phys.
08
,
045
(
2007
);
4.
H.
Borchers
,
D.
Buchholz
, and
B.
Schroer
, “
Polarization-free generators and the S-matrix
,”
Commun. Math. Phys.
219
,
125
140
(
2001
).
5.
O.
Bratteli
and
W.
Robinson
,
Operator Algebras and Quantum Statistical Mechanics
(
Springer
,
Heidelberg
,
1997
), Vol.
2
.
6.
D.
Buchholz
and
S.
Summers
,
Warped Convolutions: A Novel Tool in the Construction of Quantum Field Theories
, Quantum Field Theory and Beyond: Essays in Honor of Wolfhart Zimmermann, edited by
E.
Seiler
and
K.
Sibold
(
World Scientific
,
2008
), pp.
107
121
.
7.
D.
Buchholz
,
G.
Lechner
, and
S.
Summers
, “
Warped convolutions, Rieffel deformations and the construction of quantum field theories
,”
Commun. Math. Phys.
304
,
95
123
(
2011
).
8.
S.
Doplicher
,
K.
Fredenhagen
, and
J. E.
Roberts
, “
The quantum structure of spacetime at the Planck scale and quantum fields
,”
Commun. Math. Phys.
172
,
187
220
(
1995
).
9.
P. Di
Francesco
, and
P.
Mathieu
, and
D.
Sénéchal
,
Conformal Field Theory
(
Springer-Verlag
,
New York
,
1997
).
10.
K.
Fredenhagen
, Quantum Field Theory, Lecture Notes (
2006
) (unpublished).
11.
H.
Grosse
, “
On the construction of Möller operators for the nonlinear Schrödinger equation
,”
Phys. Lett. B
86
,
267
271
(
1979
).
12.
H.
Grosse
and
G.
Lechner
, “
Wedge-local quantum fields and noncommutative Minkowski space
,”
J. High Energy Phys.
11
,
012
(
2007
).
13.
H.
Grosse
and
G.
Lechner
, “
Noncommutative deformations of Wightman quantum field theories
,”
J. High Energy Phys.
09
,
131
(
2008
).
14.
H.
Grosse
and
R.
Wulkenhaar
, “
Renormalisation of ϕ4-theory on noncommutative
$\mathbb {R}^2$
R2
in the matrix base
,”
J. High Energy Phys.
19
,
312
(
2003
).
15.
H.
Grosse
and
R.
Wulkenhaar
, “
Renormalisation of ϕ4-theory on noncommutative
$\mathbb {R}^4$
R4
in the matrix base
,”
Commun. Math. Phys.
256
,
305
374
(
2005
).
16.
H.
Grosse
and
R.
Wulkenhaar
, “
Renormalisation of ϕ4-theory on noncommutative
$\mathbb {R}^4$
R4
to all orders
,”
Lett. Math. Phys.
71
,
13
26
(
2005
).
17.
G.
Lechner
, “
Deformations of quantum field theories and integrable models
,” e-print arXiv:1104.1948v2 [math-ph].
18.
A.
Klimyk
and
K.
Schmüdgen
,
Quantum Groups and Their Representations
, (
Springer
,
1997
).
19.
M.
Reed
and
B.
Simon
,
Analysis
,
Methods of Modern Mathematical Physics II
(
Academic
,
1975
).
20.
N.
Seiberg
and
E.
Witten
, “
String theory and noncommutative geometry
,”
J. High Energy Phys.
9909
,
032
(
1999
).
21.
K.
Sibold
, Renormalization Theory, Lecture Notes (
1993
).
22.
R. F.
Streater
and
A. S.
Wightman
,
PCT, Spin and Statistics, and All That
(
Benjamin
,
Reading, MA
,
1964
).
23.
J. A.
Swieca
and
A. H.
Völkel
, “
Remarks on conformal invariance
,”
Commun. Math. Phys.
29
,
319
342
(
1973
).
24.
J.
Wess
, “
q-deformed Heisenberg algebras
,” arXiv:math-ph/9910013v1 [math-ph/99100013], Report number: LMU-TPW/99-xx.
25.
J.
Wess
and
B.
Zumino
, “
Covariant differential calculus on the quantum hyperplane
,”
Nucl. Phys. B (Proc. Suppl.)
18B
,
302
(
1990
).
You do not currently have access to this content.