We analyse the response of an arbitrarily accelerated Unruh-DeWitt detector coupled to a massless scalar field in Minkowski spacetimes of dimensions up to six, working within first-order perturbation theory and assuming a smooth switch-on and switch-off. We express the total transition probability as a manifestly finite and regulator-free integral formula. In the sharp switching limit, the transition probability diverges in dimensions greater than three but the transition rate remains finite up to dimension five. In dimension six, the transition rate remains finite in the sharp switching limit for trajectories of constant scalar proper acceleration, including all stationary trajectories, but it diverges for generic trajectories. The divergence of the transition rate in six dimensions suggests that global embedding spacetime methods for investigating detector response in curved spacetime may have limited validity for generic trajectories when the embedding spacetime has dimension higher than five.

1.
W. G.
Unruh
, “
Notes on black hole evaporation
,”
Phys. Rev. D
14
,
870
(
1976
).
2.
N. D.
Birrell
and
P. C. W.
Davies
,
Quantum Fields in Curved Space
(
Cambridge University Press
,
1982
).
3.
R. M.
Wald
,
Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics
(
University of Chicago Press
,
Chicago
,
1994
).
4.
B. S.
DeWitt
, “
Quantum gravity: the new synthesis
,”
General Relativity: An Einstein Centenary Survey
, edited by
S. W.
Hawking
and
W.
Israel
(
Cambridge University Press
,
1979
), p.
680
.
5.
S. W.
Hawking
, “
Particle creation by black holes
,”
Commun. Math. Phys.
43
,
199
(
1975
);
S. W.
Hawking
,
Commun. Math. Phys.
46
,
206
(
1976
) (Erratum).
6.
J. B.
Hartle
and
S. W.
Hawking
, “
Path integral derivation of black hole radiance
,”
Phys. Rev. D
13
,
2188
(
1976
).
7.
G. W.
Gibbons
and
S. W.
Hawking
, “
Cosmological event horizons, thermodynamics, and particle creation
,”
Phys. Rev. D
15
,
2738
(
1977
).
8.
B. S.
Kay
and
R. M.
Wald
, “
Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space-times with a bifurcate Killing horizon
,”
Phys. Rep.
207
,
49
(
1991
).
9.
Y.
Decanini
and
A.
Folacci
, “
Off-diagonal coefficients of the Dewitt-Schwinger and Hadamard representations of the Feynman propagator
,”
Phys. Rev. D
73
,
044027
(
2006
);
10.
C. J.
Fewster
, “
A general worldline quantum inequality
,”
Class. Quantum. Grav.
17
,
1897
(
2000
);
11.
W.
Junker
and
E.
Schrohe
, “
Adiabatic vacuum states on general space-time manifolds: Definition, construction, and physical properties
,”
Ann. Henri Poincare
3
,
1113
(
2002
);
12.
L.
Hörmander
,
Distribution Theory and Fourier Analysis
,
The Analysis of Linear Partial Differential Operators Vol. I
, 2nd ed. (
Springer
,
Berlin
,
1990
) (Theorem 8.2.4).
13.
L.
Hörmander
, “
Fourier integral operators. I
,”
Acta Math.
127
,
79
(
1971
);
Fourier Integral Operators
, edited by
J.
Brüning
and
V. W.
Guillemin
(
Springer
,
Berlin
,
1994
) (Reprinted) (Theorem 2.5.11).
14.
L.
Sriramkumar
and
T.
Padmanabhan
, “
Response of finite time particle detectors in noninertial frames and curved space-time
,”
Class. Quantum. Grav.
13
,
2061
(
1996
);
15.
S.
Schlicht
, “
Considerations on the Unruh effect: Causality and regularization
,”
Class. Quantum. Grav.
21
,
4647
(
2004
);
16.
S.
Schlicht
, “
Betrachtungen zum Unruh-Effekt: Kausalität und Regularisierung
,” Ph.D. dissertation (
University of Freiburg
,
2002
).
17.
J.
Louko
and
A.
Satz
, “
How often does the Unruh-DeWitt detector click? Regularisation by a spatial profile
,”
Class. Quantum. Grav.
23
,
6321
(
2006
);
18.
B. F.
Svaiter
and
N. F.
Svaiter
, “
Inertial and noninertial particle detectors and vacuum fluctuations
,”
Phys. Rev. D
46
,
5267
(
1992
);
B. F.
Svaiter
and
N. F.
Svaiter
,
Phys. Rev. D
47
,
4802
(
1993
) (Erratum).
19.
P. G.
Grove
, “
On the absorption of negative energy fluxes
,”
Class. Quantum. Grav.
5
,
1381
(
1988
).
20.
A.
Higuchi
,
G. E. A.
Matsas
, and
C. B.
Peres
, “
Uniformly accelerated finite time detectors
,”
Phys. Rev. D
48
,
3731
(
1993
).
21.
N.
Suzuki
, “
Accelerated detector nonlinearly coupled to a scalar field
,”
Class. Quantum. Grav.
14
,
3149
(
1997
).
22.
A.
Satz
, “
Then again, how often does the Unruh-DeWitt detector click if we switch it carefully?
,”
Class. Quantum. Grav.
24
,
1719
(
2007
);
23.
J.
Louko
and
A.
Satz
, “
Transition rate of the Unruh-DeWitt detector in curved spacetime
,”
Class. Quantum. Grav.
25
,
055012
(
2008
);
24.
P.
Langlois
, “
Causal particle detectors and topology
,”
Ann. Phys. (N.Y.)
321
,
2027
(
2006
);
25.
P.
Langlois
, “
Imprints of spacetime topology in the Hawking-Unruh effect
,” Ph.D. dissertation (
University of Nottingham
,
2005
);
26.
Black Holes in Higher Dimensions
, edited by
G. T.
Horowitz
(
Cambridge University Press
,
2012
).
27.
S.
Deser
and
O.
Levin
, “
Accelerated detectors and temperature in (anti)-de Sitter spaces
,”
Class. Quantum. Grav.
14
,
L163
(
1997
);
28.
S.
Deser
and
O.
Levin
, “
Equivalence of Hawking and Unruh temperatures through flat space embeddings
,”
Class. Quantum. Grav.
15
,
L85
(
1998
);
29.
S.
Deser
and
O.
Levin
, “
Mapping Hawking into Unruh thermal properties
,”
Phys. Rev. D
59
,
064004
(
1999
);
30.
N. L.
Santos
,
O. J. C.
Dias
, and
J. P. S.
Lemos
, “
Global embedding of D-dimensional black holes with a cosmological constant in Minkowskian spacetimes: Matching between Hawking temperature and Unruh temperature
,”
Phys. Rev. D
70
,
124033
(
2004
);
31.
L. C.
Barbado
,
C.
Barcelo
,
L. J.
Garay
, “
Hawking radiation as perceived by different observers
,”
Class. Quantum. Grav.
28
,
125021
(
2011
);
e-print arXiv:1101.4382 [gr-qc].
32.
T. G.
Downes
,
I.
Fuentes
, and
T. C.
Ralph
, “
Entangling moving cavities in non-inertial frames
,”
Phys. Rev. Lett.
106
,
210502
(
2011
);
[PubMed]
e-print arXiv:1007.4035 [quant-ph].
33.
E.
Martín-Martínez
,
I.
Fuentes
, and
R. B.
Mann
, “
Using Berry's phase to detect the Unruh effect at lower accelerations
,”
Phys. Rev. Lett.
107
,
131301
(
2011
);
[PubMed]
e-print arXiv:1012.2208 [quant-ph].
34.
A.
Dragan
,
I.
Fuentes
, and
J.
Louko
, “
Quantum accelerometer: Distinguishing inertial Bob from his accelerated twin Rob by a local measurement
,”
Phys. Rev. D
83
,
085020
(
2011
);
e-print arXiv:1007.5052 [quant-ph].
35.
S.
Takagi
, “
Vacuum noise and stress induced by uniform acceleration: Hawking-Unruh effect in Rindler manifold of arbitrary dimension
,”
Prog. Theor. Phys. Suppl.
88
,
1
(
1986
).
36.
C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
Freeman
,
San Francisco
,
1973
).
37.
C.
Fronsdal
, “
Completion and embedding of the Schwarzschild solution
,”
Phys. Rev.
116
,
778
(
1959
).
38.
W.
Israel
, “
Thermofield dynamics of black holes
,”
Phys. Lett. A
57
,
107
(
1976
).
39.
M. M.
White
, “
Particle detector models in Minkowski spacetimes
,” M.Math. thesis,
University of Nottingham
,
2009
.
40.
M.
Ferraris
and
M.
Francaviglia
, “
An algebraic isometric embedding of Kruskal space-time
,”
Gen. Relativ. Gravit.
10
,
283
(
1979
).
41.
L.
Hodgkinson
and
J.
Louko
, “
Static, stationary and inertial Unruh-DeWitt detectors on the BTZ black hole
,”
e-print arXiv:1206.2055 [gr-qc].
42.
S. Y.
Lin
and
B. L.
Hu
, “
Backreaction and the Unruh effect: New insights from exact solutions of uniformly accelerated detectors
,”
Phys. Rev. D
76
,
064008
(
2007
);
43.
D. C. M.
Ostapchuk
,
S. Y.
Lin
,
R. B.
Mann
, and
B. L.
Hu
, “
Entanglement dynamics between inertial and non-uniformly accelerated detectors
,”
JHEP
1207
,
072
(
2012
);
e-print arXiv:1108.3377 [gr-qc].
You do not currently have access to this content.