We extend Hamilton–Jacobi theory to Lagrange–Dirac (or implicit Lagrangian) systems, a generalized formulation of Lagrangian mechanics that can incorporate degenerate Lagrangians as well as holonomic and nonholonomic constraints. We refer to the generalized Hamilton–Jacobi equation as the Dirac–Hamilton–Jacobi equation. For non-degenerate Lagrangian systems with nonholonomic constraints, the theory specializes to the recently developed nonholonomic Hamilton–Jacobi theory. We are particularly interested in applications to a certain class of degenerate nonholonomic Lagrangian systems with symmetries, which we refer to as weakly degenerate Chaplygin systems, that arise as simplified models of nonholonomic mechanical systems; these systems are shown to reduce to non-degenerate almost Hamiltonian systems, i.e., generalized Hamiltonian systems defined with non-closed two-forms. Accordingly, the Dirac–Hamilton–Jacobi equation reduces to a variant of the nonholonomic Hamilton–Jacobi equation associated with the reduced system. We illustrate through a few examples how the Dirac–Hamilton–Jacobi equation can be used to exactly integrate the equations of motion.

1.
P. A. M.
Dirac
, “
Generalized Hamiltonian dynamics
,”
Can. J. Math.
2
,
129
148
(
1950
).
2.
P. A. M.
Dirac
, “
Generalized Hamiltonian dynamics
,”
Proc. R. Soc. London, Ser. A
246
,
326
332
(
1958
).
3.
P. A. M.
Dirac
,
Lectures on Quantum Mechanics
(
Belfer Graduate School of Science, Yeshiva University
,
New York
,
1964
).
4.
M.
Henneaux
and
C.
Teitelboim
,
Quantization of Gauge Systems
(
Princeton University Press
,
Princeton, NJ
,
1992
).
5.
M. J.
Gotay
,
J. M.
Nester
, and
G.
Hinds
, “
Presymplectic manifolds and the Dirac–Bergmann theory of constraints
,”
J. Math. Phys.
19
,
2388
2399
(
1978
).
6.
M. J.
Gotay
, and
J. M.
Nester
, “
Presymplectic Hamilton and Lagrange systems, gauge transformations and the Dirac theory of constraints
,” in
Group Theoretical Methods in Physics
, edited by
W.
Beiglböck
,
A.
Böhm
,
E.
Takasugi
,
M.
Gotay
, and
J.
Nester
(
Springer
,
1979
), Vol.
94
, pp.
272
279
.
7.
M. J.
Gotay
and
J. M.
Nester
, “
Presymplectic Lagrangian systems. I: the constraint algorithm and the equivalence theorm
,”
Ann. Inst. Henri Poincare, Sect. A
30
,
129
142
(
1979
).
8.
M. J.
Gotay
and
J. M.
Nester
, “
Presymplectic Lagrangian systems. II: the second-order equation problem
,”
Ann. Inst. Henri Poincare, Sect. A
32
,
1
13
(
1980
).
9.
H. P.
Künzle
, “
Degenerate Lagrangean systems
,”
Ann. Inst. Henri Poincare, (A)
11
,
393
414
(
1969
).
10.
M.
de León
and
D.
Martín de Diego
, “
A constraint algorithm for singular Lagrangians subjected to nonholonomic constraints
,”
J. Math. Phys.
38
,
3055
3062
(
1997
).
11.
H.
Yoshimura
and
J. E.
Marsden
, “
Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems
,”
J. Geom. Phys.
57
,
133
156
(
2006
).
12.
H.
Yoshimura
and
J. E.
Marsden
, “
Dirac structures in Lagrangian mechanics Part II: Variational structures
,”
J. Geom. Phys.
57
,
209
250
(
2006
).
13.
K. D.
Rothe
and
F. G.
Scholtz
, “
On the Hamilton–Jacobi equation for second-class constrained systems
,”
Ann. Phys.
308
,
639
651
(
2003
).
14.
J. F.
Cariñena
,
X.
Gracia
,
G.
Marmo
,
E.
Martínez
,
M.
Munõz Lecanda
, and
N.
Román-Roy
, “
Geometric Hamilton–Jacobi theory
,”
Int. J. Geom. Methods Mod. Phys.
3
,
1417
1458
(
2006
).
15.
D.
Iglesias-Ponte
,
M.
de León
, and
D.
Martín de Diego
, “
Towards a Hamilton–Jacobi theory for nonholonomic mechanical systems
,”
J. Phys. A: Math. Theor.
41
,
015205
(
2008
).
16.
R.
Abraham
and
J. E.
Marsden
,
Foundations of Mechanics
, 2nd ed. (
Addison-Wesley
,
1978
).
17.
M.
de León
,
J. C.
Marrero
, and
D.
Martín de Diego
, “
Linear almost Poisson structures and Hamilton–Jacobi equation. Applications to nonholonomic mechanics
,”
J. Geom. Mech.
2
,
159
198
(
2010
).
18.
T.
Ohsawa
and
A. M.
Bloch
, “
Nonholonomic Hamilton–Jacobi equation and integrability
,”
J. Geom. Mech.
1
,
461
481
(
2009
).
19.
J. F.
Cariñena
,
X.
Gracia
,
G.
Marmo
,
E.
Martínez
,
M. C.
Munõz Lecanda
, and
N.
Román-Roy
, “
Geometric Hamilton–Jacobi theory for nonholonomic dynamical systems
,”
Int. J. Geom. Methods Mod. Phys.
7
,
431
454
(
2010
).
20.
T.
Ohsawa
,
O. E.
Fernandez
,
A. M.
Bloch
, and
D. V.
Zenkov
, “
Nonholonomic Hamilton–Jacobi theory via Chaplygin Hamiltonization
,”
J. Geom. Phys.
61
,
1263
1291
(
2011
).
21.
This setting usually gives a singular perturbation problem with the small mass being its parameter. For example, for the Lagrangian
$L_{\varepsilon } = \varepsilon {\dot{x}}^{2}/2 - x^{2}/2$
Lɛ=ɛẋ2/2x2/2
, the Euler–Lagrange equation gives
$\varepsilon {\ddot{x}} + x = 0$
ɛẍ+x=0
; the solution corresponding to the massless Lagrangian L0 deviates significantly from the original solution.
22.
N.
Getz
, “
Control of balance for a nonlinear nonholonomic non-minimum phase model of a bicycle
,” in
Proceedings of the 1994 American Control Conference
(
IEEE
,
New York
,
1994
), Vol.
1
, pp.
148
151
.
23.
N. H.
Getz
and
J. E.
Marsden
, “
Control for an autonomous bicycle
,” in
Proceedings of the 1995 IEEE International Conference on Robotics and Automation
(
IEEE
,
New York
,
1995
), Vol.
2
, pp.
1397
1402
.
24.
W. S.
Koon
and
J. E.
Marsden
, “
The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems
,”
Rep. Math. Phys.
40
,
21
62
(
1997
).
25.
T.
Courant
, “
Dirac manifolds
,”
Trans. Am. Math. Soc.
319
,
631
661
(
1990
).
26.
M.
Dalsmo
and
A. J.
van der Schaft
, “
On representations and integrability of mathematical structures in energy-conserving physical systems
,”
SIAM J. Control Optim.
37
,
54
91
(
1998
).
27.
A. M.
Bloch
and
P. E.
Crouch
, “
Representations of Dirac structures on vector spaces and nonlinear L-C circuits
,” in
Differential Geometry and Control Theory
(
American Mathematical Society
,
1997
) pp.
103
117
.
28.
A. J.
van der Schaft
, “
Implicit Hamiltonian systems with symmetry
,”
Rep. Math. Phys.
41
,
203
221
(
1998
).
29.
A. J.
van der Schaft
, “
Port-Hamiltonian systems: an introductory survey
,” in
Proceedings of the International Congress of Mathematicians
(
European Mathematical Society
,
Zurich, Switzerland
,
2006
), Vol.
3
, pp.
1339
1365
.
30.
W. M.
Tulczyjew
, “
Les sous-variétés lagrangiennes et la dynamique hamiltonienne
,”
Acad. Sci., Paris, C. R.
283
,
15
18
(
1976
).
31.
W. M.
Tulczyjew
, “
Les sous-variétés lagrangiennes et la dynamique lagrangienne
,”
C. R. Acad. Sci., Paris, C. R.
283
,
675
678
(
1976
).
32.
A.
Ibort
,
M.
de León
,
G.
Marmo
, and
D.
Martín de Diego
, “
Non-holonomic constrained systems as implicit differential equations
,”
Rend. Semin. Mat. Torino
54
,
295
317
(
1996
).
33.
K.
Grabowska
and
J.
Grabowski
, “
Variational calculus with constraints on general algebroids
,”
J. Phys. A: Math. Theor.
41
,
175204
(
2008
).
34.
E.
Johnson
and
T. D.
Murphey
, “
Dynamic modeling and motion planning for marionettes: Rigid bodies articulated by massless strings
,” in
Proceedings of the 2007 IEEE International Conference on Robotics and Automation
(
IEEE
,
New York
,
2007
), pp.
330
335
.
35.
T. D.
Murphey
and
M.
Egerstedt
, “
Choreography for marionettes: Imitation, planning, and control
,” in
IEEE International Conference on Intelligent and Robotic Systems Workshop on Art and Robotics
,
San Diego
,
2007
.
36.
An almost Hamiltonian system is a generalized Hamiltonian system defined with a non-degenerate but non-closed two-form as opposed to a symplectic form (which is closed by definition)(Refs. 39 and 55).
37.
J.
Koiller
, “
Reduction of some classical non-holonomic systems with symmetry
,”
Arch. Ration. Mech. Anal.
118
,
113
148
(
1992
).
38.
J.
Cortés
,
Geometric, Control and Numeric Aspects of Nonholonomic Systems
,
Lecture Notes in Mathematics
Vol.
1793
(
Springer
,
2004
).
39.
S.
Hochgerner
and
L.
García-Naranjo
, “
G-Chaplygin systems with internal symmetries, truncation, and an (almost) symplectic view of Chaplygin's ball
,”
J. Geom. Mech.
1
,
35
53
(
2009
).
40.
R.
Montgomery
,
A Tour of Subriemannian Geometries, Their Geodesics and Applications
(
American Mathematical Society
,
2002
).
41.
M.
de León
and
D.
Martín de Diego
, “
On the geometry of non-holonomic Lagrangian systems
,”
J. Math. Phys.
37
,
3389
3414
(
1996
).
42.
M.
de León
,
J. C.
Marrero
, and
D.
Martín de Diego
, “
Mechanical systems with nonlinear constraints
,”
Int. J. Theor. Phys.
36
,
979
995
(
1997
).
43.
D. P.
Tsakiris
, “
Motion control and planning for nonholonomic kinematic chains
,” Ph.D. dissertation (
University of Maryland
, College Park,
1995
).
44.
P. S.
Krishnaprasad
and
D. P.
Tsakiris
, “
Oscillations, SE(2)-snakes and motion control: a study of the roller racer
,”
Dyn. Syst.
16
,
347
397
(
2001
).
45.
A. M.
Bloch
,
Nonholonomic Mechanics and Control
(
Springer
,
2003
).
46.
We note that, in the original model,(Refs. 43 and 44) only the kinetic energy of the second body is ignored, and its rotational energy is taken into account; one obtains a non-degenerate Lagrangian with such an approximation.
47.
A distribution ΔQTQ is said to be completely nonholonomic (or bracket-generating) if ΔQ along with all of its iterated Lie brackets
$[\Delta _{Q}, \Delta _{Q}], [\Delta _{Q}, [\Delta _{Q}, \Delta _{Q}]], \protect \dots$
[ΔQ,ΔQ],[ΔQ,[ΔQ,ΔQ]],
spans the tangent bundle TQ. See, e.g., Vershik and Gershkovich (Ref. 66) and Montgomery (Ref. 40).
48.
H.
Yoshimura
and
J. E.
Marsden
, “
Dirac structures and the Legendre transformation for implicit Lagrangian and Hamiltonian systems
,” in
Lagrangian and Hamiltonian Methods for Nonlinear Control 2006
(
2007
), pp.
233
247
.
49.
The (x, y)-dependence is eliminated because we expect that the vector field
$\protect \mathcal {X}$
X
to be
$\protect \mathbb {R}^{2}$
R2
-translational invariant since the system possesses
$\protect \mathbb {R}^{2}$
R2
-symmetry.
50.
D. M. F.
Chapman
, “
Ideal vortex motion in two dimensions: Symmetries and conservation laws
,”
J. Math. Phys.
19
,
1988
1992
(
1978
).
51.
P. K.
Newton
,
The N-vortex Problem
(
Springer
,
New York
,
2001
).
52.
C. W.
Rowley
and
J. E.
Marsden
, “
Variational integrators for degenerate Lagrangians, with application to point vortices
,” in
Proceedings of the 41st IEEE CDC
,
Las Vegas
,
2002
.
53.
K. M.
Ehlers
,
J.
Koiller
,
R.
Montgomery
, and
P. M.
Rios
, “
Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization
,” in
The Breadth of Symplectic and Poisson Geometry
(
Birkhäuser
,
2004
), pp.
75
120
.
54.
Recall that we cannot define a Hamiltonian
$H: T^{*}Q \rightarrow \protect \mathbb {R}$
H:T*QR
for the original system because the original Lagrangian
$L: TQ \rightarrow \protect \mathbb {R}$
L:TQR
is degenerate.
55.
L.
Bates
and
J.
Sniatycki
, “
Nonholonomic reduction
,”
Rep. Math. Phys.
32
,
99
115
(
1993
).
56.
F.
Cantrijn
,
M.
de León
,
J. C.
Marrero
, and
D.
Martín de Diego
, “
Reduction of constrained systems with symmetries
,”
J. Math. Phys.
40
,
795
820
(
1999
).
57.
See, e.g., Kobayashi and Nomizu (Ref. 67)[Proposition 1.3 (3) on p. 65].
58.
J. E.
Marsden
and
M.
West
, “
Discrete mechanics and variational integrators
,”
Acta Numerica
,
357
514
(
2001
).
59.
P. J.
Channell
and
C.
Scovel
, “
Symplectic integration of Hamiltonian systems
,”
Nonlinearity
3
,
231
259
(
1990
).
60.
M.
Leok
, and
T.
Ohsawa
, “
Discrete Dirac structures and implicit discrete Lagrangian and Hamiltonian systems
,” in
XVIII International Fall Workshop on Geometry and Physics
, edited by
M.
Asorey
,
J.
Clemente-Gallardo
,
E.
Martinez
, and
J. F.
Carinena
(
AIP
,
2010
), Vol.
1260
, pp.
91
102
.
61.
M.
Leok
and
T.
Ohsawa
, “
Variational and geometric structures of discrete Dirac mechanics
,”
Found. Computat. Math.
11
,
529
562
(
2011
).
62.
H.
Yoshimura
and
J. E.
Marsden
, “
Dirac cotangent bundle reduction
,”
J. Geom. Mech.
1
,
87
158
(
2009
).
63.
M.
Jotz
and
T. S.
Ratiu
, “
Dirac structures, nonholonomic systems and reduction
,”
Rep. Math. Phys.
(to appear).
64.
F.
Cantrijn
,
J. F.
Cariñena
,
M.
Crampin
, and
L. A.
Ibort
, “
Reduction of degenerate Lagrangian systems
,”
J. Geom. Phys.
3
,
353
400
(
1986
).
65.
H.
Bursztyn
and
O.
Radko
, “
Gauge equivalence of Dirac structures and symplectic groupoids
,”
Ann. Inst. Fourier
53
,
309
337
(
2003
).
66.
A. M.
Vershik
and
V. Y.
Gershkovich
, “
Nonholonomic problems and the theory of distributions
,”
Acta Appl. Math.
12
,
181
209
(
1988
).
67.
S.
Kobayashi
and
K.
Nomizu
,
Foundations of Differential Geometry
(
Interscience
,
New York
,
1963
).
You do not currently have access to this content.