In the present paper, we would like to draw attention to a possible generalized Fisher information that fits well in the formalism of nonextensive thermostatistics. This generalized Fisher information is defined for densities on Rn. Just as the maximum Rényi or Tsallis entropy subject to an elliptic moment constraint is a generalized q-Gaussian, we show that the minimization of the generalized Fisher information also leads a generalized q-Gaussian. This yields a generalized Cramér-Rao inequality. In addition, we show that the generalized Fisher information naturally pops up in a simple inequality that links the generalized entropies, the generalized Fisher information, and an elliptic moment. Finally, we give an extended Stam inequality. In this series of results, the extremal functions are the generalized q-Gaussians. Thus, these results complement the classical characterization of the generalized q-Gaussian and introduce a generalized Fisher information as a new information measure in nonextensive thermostatistics.

1.
M.
Agueh
, “
Sharp Gagliardo-Nirenberg inequalities via p-Laplacian type equations
,”
NoDEA-Nonlinear Diff.
15
(
4–5
),
457
472
(
2008
).
2.
R. D.
Benguria
and
H.
Linde
, “
Isoperimetric inequalities for eigenvalues of the Laplace operator
,” in
Fourth Summer School in Analysis and Mathematical Physics: Topics in Spectral Theory and Quantum Mechanics
,
Contemporary Mathematics
Vol. 476 (
American Mathematical Society
, October
2008
), pp.
1
40
.
3.
D. E.
Boekee
, “
An extension of the Fisher information measure
,” in
Topics in Information Theory
, edited by
I
Csiszár
and
P.
Elias
(
Keszthely
,
Hungary
,
1977
), Vol. 16, pp.
113
123
. János Bolyai Mathematical Society and North-Holland.
4.
B. V.
Brunt
,
The Calculus of Variations
(
Birkhäuser
,
2004
).
5.
M.
Casas
,
L.
Chimento
,
F.
Pennini
,
A.
Plastino
, and
A. R.
Plastino
, “
Fisher information in a Tsallis non-extensive environment
,”
Chaos, Solitons Fractals
13
(
3
),
451
459
(March
2002
).
6.
L.
Chimento
,
F.
Pennini
, and
A.
Plastino
, “
Naudts-like duality and the extreme Fisher information principle
,”
Phys. Rev. E
62
(
5 Pt B
),
7462
7465
(November
2000
).
7.
M.
Cohen
, “
The Fisher information and convexity
,”
IEEE Trans. Inf. Theory
14
(
4
),
591
592
(
1968
).
8.
D.-P.
Covei
, “
Existence and uniqueness of solutions for the Lane, Emden and Fowler type problem
,”
Nonlinear Anal. Theory, Methods Appl.
72
(
5
),
2684
2693
(March
2010
).
9.
M.
Del Pino
and
J.
Dolbeault
, “
Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions
,”
J. Math. Pures Appl.
81
(
9
),
847
875
(September
2002
).
10.
M.
Del Pino
and
J.
Dolbeault
, “
The optimal euclidean Lp-Sobolev logarithmic inequality
,”
J. Funct. Anal.
197
(
1
),
151
161
(January
2003
).
11.
A.
Dembo
,
T. M.
Cover
, and
J. A.
Thomas
, “
Information theoretic inequalities
,”
IEEE Trans. Inf. Theory
37
(
6
),
1501
1518
(
1991
).
12.
B. R.
Frieden
,
Science from Fisher Information: A Unification
(
Cambridge University Press
,
2004
).
13.
S.
Furuichi
, “
On the maximum entropy principle and the minimization of the Fisher information in Tsallis statistics
,”
J. Math. Phys.
50
(
1
),
013303
013312
(
2009
).
14.
S.
Furuichi
, “
On generalized Fisher informations and Cramér-Rao type inequalities
,”
J. Phys.: Conf. Ser.
201
,
012016
(
2010
).
15.
I.
Gentil
, “
The general optimal Lp-Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations
,”
J. Funct. Anal.
202
(
2
),
591
599
(
2003
).
16.
S.
Golomb
, “
The information generating function of a probability distribution
,”
IEEE Trans. Inf. Theory
12
(
1
),
75
77
(
1966
).
17.
P.
Hammad
, “
Mesure d'ordre α de l'information au sens de Fisher
,”
Rev. Stat. Appl.
26
(
1
),
73
84
(
1978
).
18.
G. H.
Hardy
,
J. E.
Littlewood
, and
G.
Pólya
,
Inequalities
(
Cambridge University Press
, February
1988
).
19.
P. J.
Huber
and
E. M.
Ronchetti
,
Robust Statistics
, 2nd ed. (
Wiley
, February
2009
).
20.
S.
Kesavan
,
Symmetrization And Applications
(
World Scientific
, August
2006
).
21.
C. P.
Kitsos
and
N. K.
Tavoularis
, “
Logarithmic Sobolev inequalities for information measures
,”
IEEE Trans. Inf. Theory
55
(
6
),
2554
2561
(
2009
).
22.
P.
Lindqvist
, Notes on the p-Laplace equation. Report 102, University of Jyväskylä,
2006
, see http://www.math.ntnu.no/~lqvist/p-laplace.pdf.
23.
E.
Lutwak
,
D.
Yang
, and
G.
Zhang
, “
Cramér-Rao and moment-entropy inequalities for Rényi entropy and generalized Fisher information
,”
IEEE Trans. Inf. Theory
51
(
2
),
473
478
(
2005
).
24.
E.
Lutwak
,
D.
Yang
, and
G.
Zhang
, “
Moment-entropy inequalities for a random vector
,”
IEEE Trans. Inf. Theory
3
(
4
),
1603
1607
(April
2007
).
25.
E.
Lutwak
,
S.
Lv
,
D.
Yang
, and
G.
Zhang
, “
Extensions of Fisher information and Stam's inequality
,”
IEEE Trans. Inf. Theory
53
(
4
),
1319
1327
(March
2012
).
26.
E.
Lutz
, “
Anomalous diffusion and Tsallis statistics in an optical lattice
,”
Phys. Rev. A
67
(
5
),
051402
(
2003
).
27.
A.
Nachman
and
A.
Callegari
, “
A nonlinear singular boundary value problem in the theory of pseudoplastic fluids
,”
SIAM J. Appl. Math.
38
(
2
),
275
281
(April
1980
).
28.
B.
Sz Nagy
, “
Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung
,”
Acta Sci. Math.
10
,
64
74
(
1941
).
29.
J.
Naudts
, “
Generalised exponential families and associated entropy functions
,”
Entropy
10
(
3
),
131
149
(
2008
).
30.
J.
Naudts
, “
The q-exponential family in statistical physics
,”
Cent. Eur. J. Phys.
7
(
3
),
405
413
(
2009
).
31.
A.
Ohara
and
T.
Wada
, “
Information geometry of q-Gaussian densities and behaviors of solutions to related diffusion equations
,”
J. Phys. A: Math. Theor.
43
(
3
),
035002
(
2010
).
32.
F.
Pennini
,
A. R.
Plastino
, and
A.
Plastino
, “
Rényi entropies and Fisher informations as measures of nonextensivity in a Tsallis setting
,”
Physica A
258
(
3–4
),
446
457
(September
1998
).
33.
F.
Pennini
,
A.
Plastino
, and
G. L.
Ferri
, “
Semiclassical information from deformed and escort information measures
,”
Physica A
383
(
2
),
782
796
(September
2007
).
34.
A.
Plastino
,
A. R.
Plastino
, and
M.
Casas
, “
Fisher variational principle and thermodynamics
,” in
Variational and Extremum Principles in Macroscopic Systems
, edited by
S.
Sieniutycz
and
H.
Farkas
(
Elsevier
,
Oxford
,
2005
), pp.
379
394
.
35.
V.
Schwämmle
,
F. D.
Nobre
, and
C.
Tsallis
, “
q-Gaussians in the porous-medium equation: Stability and time evolution
,”
Eur. Phys. J. B: Condens. Matter Complex Sys.
66
(
4
),
537
546
(
2008
).
36.
A. J.
Stam
, “
Some inequalities satisfied by the quantities of information of Fisher and Shannon
,”
Inf. Control
2
(
2
),
101
112
(
1959
).
37.
C.
Tsallis
, “
Possible generalization of Boltzmann-Gibbs statistics
,”
J. Stat. Phys.
52
(
1
),
479
487
(
1988
).
38.
C.
Tsallis
,
Introduction to Nonextensive Statistical Mechanics
(
Springer
,
2009
).
39.
C.
Vignat
and
A.
Plastino
, “
Why is the detection of q-Gaussian behavior such a common occurrence?
,”
Physica A
388
(
5
),
601
608
(
2009
).
You do not currently have access to this content.