All real solutions of the Lane–Emden equation for n = 5 are obtained in terms of Jacobian and Weierstrass elliptic functions. A new family of solutions is found. It is expressed by remarkably simple formulae involving Jacobian elliptic functions only. The general properties and discrete scaling symmetries of these new solutions are discussed. We also comment on their possible applications.

1.
J. H.
Lane
,
Amer. J. Sci. Arts
50
,
57
(
1870
).
2.
R.
Emden
,
Gaskugeln: Anwendungen der Mechanischen Wärmetheorie auf Kosmologische und Meteorologische Probleme
(
Teubner
,
Berlin
,
1907
).
3.
H. C.
Plummer
,
Mon. Not. R. Astron. Soc.
71
,
460
(
1911
).
4.
H.
Goenner
and
P.
Havas
,
J. Math. Phys.
41
,
7029
(
2000
).
5.
S.
Chandrasekhar
,
An Introduction to the Study of Stellar Structure
(
University of Chicago
,
Chicago
,
1939
).
6.
S.
Srivastava
,
Astrophys. J.
136
,
680
(
1962
).
7.
J. O.
Murphy
,
Proc. Astron. Soc. Aust.
5
,
175
(
1983
).
8.
9.
G. P.
Horedt
,
Polytropes—Applications in Astrophysics and Related Fields
(
Kluwer Academic
,
Dordrecht
,
2004
).
10.
NIST Handbook of Mathematical Functions
, edited by
F. W. J.
Olver
,
D. W.
Lozier
,
R. F.
Boisvert
, and
C. W.
Clark
(
Cambridge University Press
,
Cambridge
,
2010
).
11.
P.
Bizoń
,
D.
Maison
, and
A.
Wasserman
,
Nonlinearity
20
,
2061
(
2007
).
12.
P.
Bizoń
,
P.
Breitenlohner
,
D.
Maison
, and
A.
Wasserman
,
Nonlinearity
23
,
225
(
2010
).
13.
R. A.
Kycia
,
J. Math. Phys.
53
,
023703
(
2012
).
14.
C. M.
Khalique
and
B.
Muatjetjeja
,
Appl. Math. Comput.
210
,
405
(
2009
).
15.
B.
Muatjetjeja
and
C. M.
Khalique
,
Pramana, J. Phys.
77
,
545
(
2011
).
16.
R. A.
Van Gorder
,
New Astron.
16
,
492
(
2011
).
You do not currently have access to this content.