The radial differential equations associated with separable perturbations of Kerr-Newman black holes are known to admit Liouvillian (closed-form) solutions for constrained frequencies and black hole parameters. In this paper, we show that the parameter constraints are satisfied exactly in the case of no rotation and thereby obtain a countable infinity of exact purely damped quasi-normal modes of fields on a Reissner-Nordstrom background at special values of the black hole charge-mass ratio. We show that with rotation the parameter constraints for Liouvillian quasi-normal modes are satisfied approximately in two distinct physical scenarios, where analytical approximations for angular eigenvalues are known. We arrive at functional expressions for quasi-normal frequencies and wave-functions in the case of near-extremal slow rotation and in a particular case of highly damped scalar modes of Kerr and Kerr-Newman. In the near-extremal case, our formulas extend a recent result of Hod to electromagnetic and gravitational perturbations.

1.
K. D.
Kokkotas
,
Nuovo Cimento
108B
,
991
(
1993
).
2.
E.
Berti
and
K. D.
Kokkotas
,
Phys. Rev. D
71
,
124008
(
2005
).
3.
S. A.
Teukolsky
,
Phys. Rev. Lett.
29
,
1114
(
1972
).
4.
W. E.
Couch
and
C. L.
Holder
,
J. Math. Phys.
48
,
102502
(
2007
).
5.
S.
Chandrasekar
,
The Mathematical Theory of Black Holes
(
Oxford University Press
,
Oxford
,
1983
).
6.
W. E.
Couch
and
C. L.
Holder
,
J. Math. Phys.
50
,
022503
(
2009
).
7.
8.
C.
Flammer
,
Spheriodal Wave Functions
(
Stanford University Press
,
Stanford
,
1957
).
10.
E.
Berti
,
V.
Cardoso
,
K. D.
Kokkotas
, and
H.
Onozawa
,
Phys. Rev. D
68
,
124018
(
2003
).
11.
E.
Berti
and
K. D.
Kokkotas
,
Phys. Rev. D
68
,
044027
(
2003
).
12.
N.
Andersson
and
C. J.
Howls
,
Class. Quantum Grav.
21
,
1623
(
2004
).
13.
N.
Andersson
and
H.
Onozawa
,
Phys. Rev. D
54
,
7470
(
1996
).
You do not currently have access to this content.