This article is concerned with the improvements of certain eigenvalue inequalities of Stokes operator and Dirichlet Laplacian related to the Berezin-Li-Yau type inequalities. The formulas proved extend the earlier works of Melas [“A lower bound for sums of eigenvalues of the Laplacian,” Proc. Am. Math. Soc.131(2), 631636 (2002)] https://doi.org/10.1090/S0002-9939-02-06834-X on Dirichlet Laplacian and of Ilyin [“Lower bounds for the spectrum of the Laplace and Stokes operators,” Discrete. Contin. Dyn. Syst.28(1), 131146 (2010)] https://doi.org/10.3934/dcds.2010.28.131 on Stokes operator for any dimension d ⩾ 2 and they are asymptotically sharp as are the earlier inequalities of Berezin-Li-Yau, Melas, and Ilyin.

1.
Ashbaugh
,
M. S.
, “
The universal eigenvalue bounds of Payne-Polya-Weinberger, Hile-Protter, and H. C. Yang
,”
Proc. Indian Acad. Sci., Math. Sci.
112
(
1
),
3
30
(
2002
).
2.
Ashbaugh
,
M. S.
and
Benguria
,
R. D.
, “
Isoperimetric Inequalities for Eigenvalues of the Laplacian
,” in
Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday, Proceedings of Symposia in Pure Mathematics
, Vol.
76
, Part 1, edited by
F.
Gesztesy
,
P.
Deift
,
C.
Galvez
,
P.
Perry
, and
W.
Schlag
(
American Mathematical Society
,
Providence, RI
,
2007
), pp.
105
139
.
3.
Berezin
,
F. A.
, “
Covariant and contravariant symbols of operators
,”
Math. USSR Izv.
6
,
1117
1151
(
1972
).
4.
Constantin
,
P.
and
Foias
,
C.
, “
Navier-Stokes Equations
” (
University of Chicago
,
Chicago
,
1988
).
5.
Foias
,
C.
,
Manley
,
O.
,
Rosa
,
R.
and
Temam
,
R.
, “
Navier-Stokes Equations and Turbulence
” (
Cambridge University Press
,
Port Chester, NY
,
2001
).
6.
Harrell
,
E. M.
 II
and
Yıldırım Yolcu
,
S.
, “
Eigenvalue inequalities for Klein-Gordon Operators
,”
J. Funct. Anal.
256
(
12
),
3977
3995
(
2009
).
7.
Hundertmark
,
D.
, “
Some bound state problems in quantum Mechanics
,” in
Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday, Proceedings of Symposia in Pure Mathematics
, Vol.
76
, Part 1, edited by
F.
Gesztesy
,
P.
Deift
,
C.
Galvez
,
P.
Perry
, and
W.
Schlag
(
American Mathematical Society
,
Providence, RI
,
2007
), pp.
463
496
.
8.
Ilyin
,
A. A.
, “
Attractors for Navier-Stokes equations in domains with finite measure
,”
Nonlinear Anal.
27
,
605
616
(
1996
).
9.
Ilyin
,
A. A.
, “
Lower bounds for the spectrum of the Laplace and Stokes operators
,”
Discrete Contin. Dyn. Syst.
28
(
1
),
131
146
(
2010
).
10.
Ilyin
,
A. A.
, “
On the Spectrum of the Stokes Operator
,”
Functional Analysis and its Applications
43
(
4
),
254
263
(
2009
).
11.
Kelliher
,
J. P.
, “
Eigenvalues of the Stokes operator versus the Dirichlet Laplacian for a bounded domain in the plane
,”
Pac. J. Math.
244
(
1
),
99
132
(
2010
).
12.
Kovařík
,
H.
,
Vugalter
,
S.
and
Weidl
,
T.
, “
Two dimensional Berezin-Li-Yau inequalities with a correction term
,”
Commun. Math. Phys.
287
(
3
),
959
981
(
2009
).
13.
Laptev
,
A.
, “
Dirichlet and Neumann Eigenvalue Problems on Domains in Euclidean Spaces
J. Funct. Anal.
151
,
531
545
(
1997
).
14.
Laptev
,
A.
and
Weidl
,
T.
, “
Recent results on Lieb-Thirring inequalities
,” Journées “Équations aux Dérivées Partielles” (La Chapelle sur Erdre, 2000), Exp. No. XX, 14 pp., Univ. Nantes, Nantes (
2000
).
15.
Li
,
P.
and
Yau
,
S.-T.
, “
On the Schrödinger equation and the eigenvalue problem
,”
Commun. Math. Phys.
88
,
309
318
(
1983
).
16.
Melas
,
A. D.
, “
A lower bound for sums of eigenvalues of the Laplacian
,”
Proc. Am. Math. Soc.
131
(
2
),
631
636
(
2002
).
17.
Metivier
,
G.
, “
Valeurs propres des opérateurs definis sur la restriction de systems varationnels à des sous-espases
,”
J. Math. Pures Appl.
57
,
133
156
(
1978
).
18.
Pólya
,
G.
, “
On the eigenvalues of the vibrating membranes
,”
Proc.London Math. Soc.
11
(
3
),
419
433
(
1961
).
19.
Temam
,
R.
, “
Navier–Stokes Equations, Theory and Numerical Analysis
,” (
North-Holland
,
Amsterdam
,
1984
).
20.
Weidl
,
T.
, “
Improved Berezin-Li-Yau inequalities with a remainder term
,” in
Spectral Theory of Differential Operators, American Mathematical Society Translations
,
Series 2
, Vol.
225
, edited by
T.
Suslina
and
D.
Yafaev
(
American Mathematical Society
,
Providence, RI
,
2008
), pp.
253
263
.
21.
Weyl
,
H.
, “
Das asymptotische Verteilungsgesetzt der Eigenwerte linearer partieller Differentialgleichungen
,”
Math. Ann.
71
(
4
),
441
479
(
1912
).
22.
Yıldırım Yolcu
,
S.
, “
An improvement to a Berezin-Li-Yau type inequality
,”
Proc. Am. Math. Soc.
138
(
11
),
4059
4066
(
2010
).
23.
Yıldırım Yolcu
,
S.
and
Yolcu
,
T.
, “
Bounds for the eigenvalues of the fractional Laplacian
,”
Rev. Math. Phys.
24
(
3
),
1250003
(
2012
).
24.
Yıldırım Yolcu
,
S.
and
Yolcu
,
T.
, “
Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain
” (submitted).
25.
Yıldırım Yolcu
,
S.
and
Yolcu
,
T.
, “
Estimates on the eigenvalues of the clamped plate problem
” (submitted).
26.
Yolcu
,
T.
, “
Refined bounds for the eigenvalues of the Klein-Gordon operator
,” (submitted).
You do not currently have access to this content.