This article is concerned with the improvements of certain eigenvalue inequalities of Stokes operator and Dirichlet Laplacian related to the Berezin-Li-Yau type inequalities. The formulas proved extend the earlier works of Melas [“A lower bound for sums of eigenvalues of the Laplacian,” Proc. Am. Math. Soc. 131(2), 631–636 (2002)] https://doi.org/10.1090/S0002-9939-02-06834-X on Dirichlet Laplacian and of Ilyin [“Lower bounds for the spectrum of the Laplace and Stokes operators,” Discrete. Contin. Dyn. Syst. 28(1), 131–146 (2010)] https://doi.org/10.3934/dcds.2010.28.131 on Stokes operator for any dimension d ⩾ 2 and they are asymptotically sharp as are the earlier inequalities of Berezin-Li-Yau, Melas, and Ilyin.
REFERENCES
1.
Ashbaugh
, M. S.
, “The universal eigenvalue bounds of Payne-Polya-Weinberger, Hile-Protter, and H. C. Yang
,” Proc. Indian Acad. Sci., Math. Sci.
112
(1
), 3
–30
(2002
).2.
Ashbaugh
, M. S.
and Benguria
, R. D.
, “Isoperimetric Inequalities for Eigenvalues of the Laplacian
,” in Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday, Proceedings of Symposia in Pure Mathematics
, Vol. 76
, Part 1, edited by F.
Gesztesy
, P.
Deift
, C.
Galvez
, P.
Perry
, and W.
Schlag
(American Mathematical Society
, Providence, RI
, 2007
), pp. 105
–139
.3.
Berezin
, F. A.
, “Covariant and contravariant symbols of operators
,” Math. USSR Izv.
6
, 1117
–1151
(1972
).4.
Constantin
, P.
and Foias
, C.
, “Navier-Stokes Equations
” (University of Chicago
, Chicago
, 1988
).5.
Foias
, C.
, Manley
, O.
, Rosa
, R.
and Temam
, R.
, “Navier-Stokes Equations and Turbulence
” (Cambridge University Press
, Port Chester, NY
, 2001
).6.
Harrell
, E. M.
II and Yıldırım Yolcu
, S.
, “Eigenvalue inequalities for Klein-Gordon Operators
,” J. Funct. Anal.
256
(12
), 3977
–3995
(2009
).7.
Hundertmark
, D.
, “Some bound state problems in quantum Mechanics
,” in Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday, Proceedings of Symposia in Pure Mathematics
, Vol. 76
, Part 1, edited by F.
Gesztesy
, P.
Deift
, C.
Galvez
, P.
Perry
, and W.
Schlag
(American Mathematical Society
, Providence, RI
, 2007
), pp. 463
–496
.8.
Ilyin
, A. A.
, “Attractors for Navier-Stokes equations in domains with finite measure
,” Nonlinear Anal.
27
, 605
–616
(1996
).9.
Ilyin
, A. A.
, “Lower bounds for the spectrum of the Laplace and Stokes operators
,” Discrete Contin. Dyn. Syst.
28
(1
), 131
–146
(2010
).10.
Ilyin
, A. A.
, “On the Spectrum of the Stokes Operator
,” Functional Analysis and its Applications
43
(4
), 254
–263
(2009
).11.
Kelliher
, J. P.
, “Eigenvalues of the Stokes operator versus the Dirichlet Laplacian for a bounded domain in the plane
,” Pac. J. Math.
244
(1
), 99
–132
(2010
).12.
Kovařík
, H.
, Vugalter
, S.
and Weidl
, T.
, “Two dimensional Berezin-Li-Yau inequalities with a correction term
,” Commun. Math. Phys.
287
(3
), 959
–981
(2009
).13.
Laptev
, A.
, “Dirichlet and Neumann Eigenvalue Problems on Domains in Euclidean Spaces
” J. Funct. Anal.
151
, 531
–545
(1997
).14.
Laptev
, A.
and Weidl
, T.
, “Recent results on Lieb-Thirring inequalities
,” Journées “Équations aux Dérivées Partielles” (La Chapelle sur Erdre, 2000), Exp. No. XX, 14 pp., Univ. Nantes, Nantes (2000
).15.
Li
, P.
and Yau
, S.-T.
, “On the Schrödinger equation and the eigenvalue problem
,” Commun. Math. Phys.
88
, 309
–318
(1983
).16.
Melas
, A. D.
, “A lower bound for sums of eigenvalues of the Laplacian
,” Proc. Am. Math. Soc.
131
(2
), 631
–636
(2002
).17.
Metivier
, G.
, “Valeurs propres des opérateurs definis sur la restriction de systems varationnels à des sous-espases
,” J. Math. Pures Appl.
57
, 133
–156
(1978
).18.
Pólya
, G.
, “On the eigenvalues of the vibrating membranes
,” Proc.London Math. Soc.
11
(3
), 419
–433
(1961
).19.
Temam
, R.
, “Navier–Stokes Equations, Theory and Numerical Analysis
,” (North-Holland
, Amsterdam
, 1984
).20.
Weidl
, T.
, “Improved Berezin-Li-Yau inequalities with a remainder term
,” in Spectral Theory of Differential Operators, American Mathematical Society Translations
, Series 2
, Vol. 225
, edited by T.
Suslina
and D.
Yafaev
(American Mathematical Society
, Providence, RI
, 2008
), pp. 253
–263
.21.
Weyl
, H.
, “Das asymptotische Verteilungsgesetzt der Eigenwerte linearer partieller Differentialgleichungen
,” Math. Ann.
71
(4
), 441
–479
(1912
).22.
Yıldırım Yolcu
, S.
, “An improvement to a Berezin-Li-Yau type inequality
,” Proc. Am. Math. Soc.
138
(11
), 4059
–4066
(2010
).23.
Yıldırım Yolcu
, S.
and Yolcu
, T.
, “Bounds for the eigenvalues of the fractional Laplacian
,” Rev. Math. Phys.
24
(3
), 1250003
(2012
).24.
Yıldırım Yolcu
, S.
and Yolcu
, T.
, “Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain
” (submitted).25.
Yıldırım Yolcu
, S.
and Yolcu
, T.
, “Estimates on the eigenvalues of the clamped plate problem
” (submitted).26.
Yolcu
, T.
, “Refined bounds for the eigenvalues of the Klein-Gordon operator
,” (submitted).© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.