For any massless, irreducible representation of the covering of the proper, orthochronous Poincaré group we construct covariant, free quantum fields that generate the representation space from the vacuum and are localized in semi-infinite strings in the sense of commutation or anti-commutation of the field operators at space-like separation of the strings. Besides the space-like string direction the field operators carry a spinor or tensor index for one of the finite dimensional representations

$D^{(\frac{j}{2},\frac{k}{2})}$
D(j2,k2) of
$SL(2,\mathbb C)$
SL(2,C)
. For given (j, k) the possible integer or half-integer values that the helicity h can take are for string fields only restricted by the condition
$|h|\le \frac{j+k}{2}$
|h|j+k2
, in contrast to the case of point localized fields where
$h=\frac{k}{2}-\frac{j}{2}$
h=k2j2
must hold. For infinite helicity no additional index on the string-field is needed in the Bose case while in the Fermi case the fields carry an additional spinor index. For finite helicity we consider in particular string-localized fields that are generalized potentials for point localized fields. The short distance behavior of their two-point functions is independent of the helicity.

1.
S.
Alazzawi
, “
A Jost-Schroer theorem for string-localized quantum fields
,” M.S. thesis,
Universität Wien
,
2010
.
2.
X.
Bekaert
,
N.
Boulanger
, and
P.
Sundell
, “
How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go theorems
,” e-print arXiv:1007.0435v2.
3.
C.
Fronsdal
, “
Massless fields with integer spin
,”
Phys. Rev. D
18
,
3624
(
1978
).
4.
R.
Brunetti
,
D.
Guido
, and
R.
Longo
, “
Modular localization and Wigner particles
,”
Rev. Math. Phys.
14
,
759
786
(
2002
).
5.
E. S.
Fradkin
and
M. A.
Vasiliev
, “
On gravitational interaction of massless higher spin fields
,”
Phys. Lett. B
189
,
89
95
(
1987
).
6.
R.
Haag
,
Local Quantum Physics
(
Springer
,
1996
).
7.
P.
Jordan
, “
Zur quantenelektrodynamik I. Eichinvariante Operatoren
,”
Z. Phys.
95
,
202
(
1935
).
8.
J.
Mund
, “
An algebraic Jost-Schroer theorem for massive theories
,” e-print arXiv:1012.1454,
2010
.
9.
J.
Mund
,
B.
Schroer
, and
J.
Yngvason
, “
String-localized quantum fields from Wigner representations
,”
Phys. Lett. B
596
,
156
162
(
2004
).
10.
J.
Mund
,
B.
Schroer
, and
J.
Yngvason
, “
String-localized quantum fields and modular localization
,”
Commun. Math. Phys.
268
,
621
672
(
2006
).
11.
J.
Mund
, “
String-localized quantum fields, modular localization and gauge theories
,” in
New Trends in Mathematical Physics
, edited by
V.
Sidoravicius
(
Springer
,
2009
), pp.
495
508
.
12.
J.
Mund
, and
E. T.
de Oliveira
(private communication).
13.
E. T.
de Oliveira
, “
String-localized Dirac fields
,” M.S. thesis, Department of Physics,
Universidade Federal de Juiz de Fora
,
2010
.
14.
B.
Reiter
, “
String-localized quantum fields for massive fermions
,” M.S. thesis, Universität Wien, 2012.
15.
J.
Schwartz
, “
Free quantized lorentzian fields
,”
J. Math. Phys.
2
,
271
(
1960
).
16.
O.
Steinmann
, “
A Jost-Schroer theorem for string fields
,”
Commun. Math. Phys.
87
,
259
264
(
1982
).
17.
R. F.
Streater
and
A. S.
Wightman
,
PCT, Spin and Statistics, and All That
(
Benjamin
,
New York
,
1964
).
18.
S.
Weinberg
, “
Feynman rules for any spin I
,”
Phys. Rev.
133
,
1318
1332
(
1964
).
19.
S.
Weinberg
, “
Feynman rules for any spin II
,”
Phys. Rev.
134
,
882
896
(
1964
).
20.
S.
Weinberg
,
The Quantum Theory of Fields I
(
Cambridge University Press
,
1995
).
21.
E.
Wigner
, “
On unitary representations of the inhomogeneous Lorentz group
,”
Ann. Math.
40
,
149
204
(
1939
).
22.
J.
Yngvason
, “
Zero-mass infinite spin representations of the Poincaré group and quantum field theory
,”
Commun. Math. Phys.
18
,
195
203
(
1970
).
You do not currently have access to this content.